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Abstract—Nearest neighbour search is a fundamental statisti-
cal classification algorithm with widespread use in artificial intel-
ligence (AI) sub-fields such as machine learning, computer vision,
and robotics. Considering the shift in host platforms running
AI algorithms from general-purpose computers to specialized
hardware implementations, a parameterizable design generator
of special purpose hardware instances that perform nearest
neighbour search is proposed, captured inside Chisel hardware
construction language, and validated on an FPGA platform.
Based on an algorithm of nearest neighbour search that traverses
a k-dimensional tree pre-stored inside read-only memory (ROM),
the generator provides parameters for configuring the structure
and volume of the tree and the points stored within it.

Index Terms—Nearest neighbour search, hardware implemen-
tation, Chisel hardware construction language, k-dimensional
tree.

I. INTRODUCTION

Nearest neighbour search is an algorithm which, for a given
input point, finds a point closest to it among a set of points.
It is useful for solving classification problems, which are
especially prevalent in artificial intelligence (AI) subfields such
as machine learning, computer vision [1], and robotics [2].

With artificial intelligence algorithms being increasingly
shifted from general-purpose computers to dedicated hard-
ware instances as a consequence of the need for increased
computational power [3], various hardware implementations
of classic AI algorithms targeting different platforms have
appeared. The Nearest Neighbour Search (NNS), along with
its variants, the Approximate Nearest Neighbour (ANN) and
k-Nearest Neighbours (k-NN) algorithms, are no exceptions.

Considering field programmable gate arrays (FPGAs) as a
hardware implementation platform of choice, there are various
incarnations of the above mentioned algorithms. They are
usually described and implemented either in the form of
pure register-transfer level (RTL) [4], [5], high-level synthesis
(HLS) [6], [7], or Open Computing Language (OpenCL) [8],
[9] code. An alternative to these approaches is to write the
behavioral code in an RTL-like form but utilizing a higher
level hardware design language instead. One such language
is Chisel [10], which is embedded in the Scala programming
language, enabling its users to write RTL instance generators
while providing benefits of both functional and object-oriented
programming paradigms. This paper proposes an implementa-
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tion of the nearest neighbour search algorithm in Chisel using
an agile [11] digital design methodology.

An effective implementation of the nearest neighbour search
algorithm should presumably work for a large number of pre-
defined points as potential output points for a given input
point. For such an implementation to be efficient in terms
of resource utilization for a target hardware platform such as
FPGA, the points need to be stored inside a memory module.
This naturally implies that the digital logic may have access
only to a limited number of pre-stored points per clock cycle.
Therefore, it is desirable to minimize the number of memory
accesses for a given input point while obtaining the correct
solution.

This is the same problem that a purely software implemen-
tation of a nearest neighbour search algorithm on a processor
would have. To minimize the amount of time needed to
process an input point, an efficient algorithm with a desirable
run-time complexity needs to be chosen. While the simplest
solution would be to run an exhaustive search of the entire
memory containing pre-defined points to find a point with the
minimal distance from the input point—yielding a linear run-
time complexity—more efficient algorithms exist.

Similar problems were encountered in the field of computer
graphics. In order to ensure the rendering of a scene in a
timely manner, it was necessary to retrieve relevant spatial
data of the scene efficiently. A technique named binary space
partitioning (BSP) was developed to solve this problem,
mainly implemented through a tree data structure [12]. The
technique entails recursively subdividing space into two parts
along a hyperplane. When a given point or polygon is queried,
the search is performed only in the sub-spaces where it could
possibly be located, thus reducing the search domain.

Space partitioning is a general method of subdividing space
in a defined manner until a certain condition is satisfied. There
are multiple implementations of this method in the form of
different tree structures with specific criteria on how a space is
divided into sub-spaces and under which conditions. Examples
of some tree structures that perform space partitioning are k-d
trees, quadtrees, and octrees. Concerning the nearest neighbour
search problem, some of the appropriate data structures that
can be used are R-trees and k-dimensional trees.

The principal data structure driving this particular imple-
mentation of the nearest neighbour search algorithm is the k-
dimensional tree, or k-d tree for short. A k-d tree is essentially
a binary search tree that contains multi-dimensional points and
is traversed based on the value of one of the coordinates of
the input point at each node in the tree.
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Fig. 1. An illustrative example of a k-dimensional tree (with k = 2 to simplify the drawing) and the two-dimensional space partitioning it performs.

Each node of the k-d tree contains a value by which the
hyperspace it belongs to is split into two. The dimension in
which the split is performed corresponds to the node’s depth
in the tree, which repetitively cycles from the last dimension
to the first when the depth of the node becomes greater than
the dimensionality of the points stored inside the tree. All
child points that have the value of the coordinate in the
corresponding dimension less than the node’s stored value
are part of the left sub-tree, while the child points with the
corresponding coordinate’s value greater than the value in the
node are part of the right sub-tree. In the case of a child point
having an equal corresponding coordinate value to the value
of the node—due to the nature of the nearest neighbour search
algorithm—it may belong to either of the sub-trees.

The average run-time complexity of the nearest neighbour
search algorithm over a k-dimensional tree is O(m+ log2 n),
where n is the number of nodes in the tree and m is the
average number of points contained in a leaf node.

II. A k-D TREE-BASED HARDWARE IMPLEMENTATION

The primary purpose and the use scenario of the proposed
implementation is to execute the nearest neighbour search
algorithm over a k-dimensional tree. The tree structure, along
with the points it contains is assumed to be constructed and
stored beforehand inside some form of a read-only memory
(ROM). In the case of an FPGA platform the ROM is in the
form of a single-port block RAM and mimics the static RAM.

This implementation uses a variant of the k-dimensional tree
in which the number of nodes in the tree is not necessarily
equal to the number of points. The points are, after a proper
traversal through the k-d tree, stored in the leaf nodes. A
leaf node may contain more than one point. An example k-
dimensional tree of this kind is shown in Fig. 1, along with
an illustration of how the tree partitions a two-dimensional
space (but in general it can be an arbitrary k-dimensional
hyperspace).

The nearest neighbour search algorithm finds the closest

point to the query point by first performing a traversal of the
k-d tree until reaching a leaf node. When visiting a node,
the value of the query point’s coordinate in the dimension
corresponding to the node’s depth is checked against the value
in the node. If the value is smaller, traversal proceeds to the left
sub-tree. Otherwise, traversal proceeds to the right sub-tree.
When reaching a leaf node, all of the points in the leaf node
are checked, calculating the distances between them and the
query point. The current closest point, along with its distance
to the query point, are stored inside dedicated registers which
are updated when a closer point is found.

After exhausting all of the points in a leaf node, the search
algorithm traverses backwards, that is up the tree and checks
if the hypersphere around the current closest point with the
radius equal to its distance from the query point intersects the
node’s splitting hyperplane. If so, a closer point to the query
point may exist on the other side of the splitting hyperplane,
so the search algorithm proceeds by traversing down the sub-
tree contained in the node’s unvisited child, until reaching a
leaf node again. This process is repeated until the algorithm
terminates when it is guaranteed to yield a point stored within
the k-dimensional tree with the minimal distance from the
query point.

For the purposes of this work, the structure of the k-
dimensional tree and the points it contains are stored in
two separate memories (or two non-overlapping memory seg-
ments). The memory used to store information about the
points contains coordinates of each point. The points inside
this particular memory (segment) are arranged in such a way
that the points belonging to the same leaf node of the k-
dimensional tree occupy consecutive memory locations.

Memory containing the tree structure stores the properties
of each node. The following properties are stored: an indicator
bit of whether the node is a leaf node, the discriminating value
stored inside the node for tree traversal (valid only for non-
leaf nodes), the starting address in the points ROM and the
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Fig. 2. Memory layout of a k-dimensional tree showing the associated Tree ROM and Points ROM structures over which the NNS realization operates.

number of points contained in the node (valid only for leaf
nodes). A node at location n in the tree ROM has its left and
right children at locations 2n + 1 and 2n + 2, respectively.
With this it is assumed that the stored k-d tree is balanced. It
is possible to construct a balanced k-d tree from an arbitrary
set of points as long as the points with the same coordinate
value as the discriminating value in the node may be stored in
either of the node’s child sub-trees. In particular use cases
of interest this discriminating value is actually the median
value of relevant coordinates of the points being considered
during k-d tree construction. The described memory layout is
illustrated in Fig. 2.

The tree traversal algorithm is recursive. Traversal is per-
formed in a depth-first manner, that is similar to the depth-
first search algorithm (DFS), which is also recursive. The DFS
algorithm, starting at the root of the tree, visits its child nodes
in a pre-defined order. When visiting one of the child nodes,
another instance of the DFS algorithm is started on the node,
running more instances of the DFS algorithm on its children
if it has any. Once an instance of the DFS algorithm for one
child node terminates, the same process is repeated for the
other. Therefore, by the time DFS starts visiting the root node’s
second child, the entirety of the sub-tree rooted in its first child
will have already been explored.

An example of the order of traversal of binary tree nodes in
the depth-first search algorithm is shown in Fig. 3. Non-leaf
tree nodes are each visited a total of three times in order to
visit the subtree rooted in their second child after visiting the
first, and to potentially traverse back up to the parent node.

Each non-leaf node’s left child is first explored, followed by
the right child. The primary characteristic of DFS is that after
visiting the leaves, it traverses back up the tree in order to
traverse down unvisited sub-trees, repeating this process until
the entire tree is explored.

A k-d tree traversal is essentially a variation on DFS tree

traversal. The difference with k-d tree traversal is that the
order of the children visited depends on the query point for
which the closest point is to be found. The left child is first
visited if the query point is on the “left” side of the splitting
hyperplane represented by the node, otherwise the right child
is first visited. Also, if the first child node’s closest point is at
a distance shorter than or equal to the distance of the query
point from the splitting hyperplane, the second child is not
explored. Unlike depth-first search, with k-d tree search the
entire tree may not necessarily be explored.

A tree traversal over an example k-d tree is illustrated in
Fig. 4. The query point for which to find the closest point is
(5, 3). In this example, during the traversal three out of the
four leaf nodes were visited. The metric used to calculate the
distance between two points (or between the query point and
a splitting hyperplane) is the squared Euclidean distance.

Software implementations of recursive algorithms may
make use of recursive function calls, which are realized on a
call stack, or allocate a stack structure specifically to store their
data and implement the algorithm as a non-recursive function.
In this case only the second option is viable, so the stack data
structure is actually implemented as an array of registers. A
separate dedicated register is used to store a pointer that keeps
track of the position of the top of the stack in the array.

III. DESIGN GENERATOR OF THE k-D TREE-BASED NNS

The previously described accelerator has been implemented
as a parameterized RTL design generator in Chisel 3 hardware
construction language. The generator has been extensively
tested by following standard Chisel verification and imple-
mentation paths for FPGA design workflows. As a hardware
library it is freely available for public use [13]. The next few
paragraphs are elaborating on different generator parameters,
as well as modes of operation of the module.
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Fig. 3. An example of the order of nodes traversed in a binary tree using
depth-first search.

A. Generator Parameters

Parameterizable properties of the design pertain mainly to
the structure of the k-dimensional tree itself and its points.

The values of point coordinates are signed integers with
a specified bit width, which is one of the parameters of the
design generator. Another generator parameter is the number
of dimensions of each point. The total size of the points ROM
is inferred from the bit width of its unsigned integer addresses,
which is specified as a yet another generator parameter. These
three parameters make up the structure of the points ROM.

Concerning the structure of the tree ROM, each location
contains one bit indicating whether the node is a leaf, a signed
integer representing the discriminator value of a node (in our
use cases referred to as the median), and two unsigned integers
representing the location and count of points inside the points
ROM. The bit width of the discriminator is the same as the
bit width of the points’ individual coordinates, while the bit
width of the location and count of points is the same as the bit
width of the addresses in the points ROM. The size of the tree
ROM, along with the bit width of its addresses is inferred from
a generator parameter specifying the maximum depth of the
tree. The number of nodes in the tree may be arbitrary though,
as the nearest neighbour search algorithm assumes that nodes
marked as leaves in the tree ROM do not have children.
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Fig. 4. An example of the order of nodes traversed in a k-d tree when finding
the closest point to the query point (5, 3).

B. Modes of Operation

To keep track of the nodes visited for the purposes of
traversing back up the tree after visiting a leaf node, a stack
structure is implemented as an array of registers. Three distinct
values are pushed onto the top of the stack to aid with the
execution of k-d tree search:

• Address of the node in tree ROM – this is the main piece
of data used to keep track which tree node to visit next.

• The child of the node to visit next – a single bit that
determines whether to visit the first or the second child of
the node during tree traversal. A value of 0 corresponds
to visiting the first child, while a value of 1 corresponds
to visiting the second child. When the value is 1, first the
distance of the current closest point to the query point is
compared to the distance of the query point to the splitting
hyperplane of the node (the median value of the node in
this case). If the distance of the closest point to the query
point is not greater, the second child is not visited.
Since after visiting the second child of a node there is
nothing left to process, the current node visited is popped
from the stack before the second child node is pushed
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onto the stack. More precisely, the value at the top of
the stack, which currently contains data about the current
node being visited, is simply replaced with the data of its
second child. In case the second child node is not to be
visited, the current node is popped from the stack.

• The depth of the node in the tree – This information is
used for calculating the distance of the current closest
point from the splitting hyperplane. The value of the
depth directly maps to which coordinate of the current
closest point to compare to the stored node median and
is also used to determine the coordinate of the query point
to compare to the median value during tree traversal.
While the depth of the node can be calculated from its
index (memory address) in the tree ROM, it is simpler
to just push onto the stack the current depth value of the
node incremented by one when pushing child nodes. The
depth value does not exceed the dimensionality of the
points in the tree as it cycles between 0 and k − 1.

Since the first node to process when a new query point is
given is always the root of the tree (address 0 in tree ROM),
whose depth is 0, and the next node to process is always its
first child, the stack is always initialized to contain these values
as the sole element of the stack before processing a new point.

At each clock cycle, the values at the top of the stack are
retrieved, which mostly determine the mode of operation of
the module. The relevant modes of operation are as follows:

• Leaf processing – this mode is active when the indicator
for whether the current node is a leaf has the value 1.
The values at the top of the stack are not used in this
case. At each clock cycle, a counter indicating how many
points were visited in the points ROM is incremented
until reaching the value in tree ROM that indicates how
many points a leaf node has. After that, the counter is
reset to 0 and the current node is popped off the stack.
The value of the counter is added to the starting address of
the node’s points in the points ROM, yielding an address
of each point to be retrieved from the points ROM. The
distance of each point is compared to the current minimal
distance from the query point. In case it is smaller, both
registers containing the closest point and its distance from
the query point are updated accordingly.
Since there is a delay of a few clock cycles due to mem-
ory access in the points ROM and distance calculations
using registers to decrease the length of logic paths, once
the points counter is set to 0, a “delay” counter is also
initialized to 2. Each clock cycle the value of this counter
is decremented until it reaches 0, regardless of the mode
of operation. The module may not produce a valid result
on its output while the value of this counter is greater
than 0, even if there are no remaining nodes left in the
tree to process for a given query point.

• Tree traversal, first child node being next – This mode
is active when the current node is not a leaf (explained
above) and the value of the child indicator at the top of
the stack is 0. The appropriate query point coordinate is

compared to the median value of the node to determine
which of the left and right children is the first child to
be visited. After that, the corresponding first child node
is pushed onto the stack.

• Tree traversal, second child node potentially being next
– This mode is active when the current node is not
a leaf and the value of the child indicator is 1. The
stored current minimal distance from the query point is
compared to the distance of the query point’s appropriate
coordinate from the median value of the node. If the
current minimal distance is not greater, the second child
of the node will not be visited, and the current node is
popped off the stack. Otherwise, values at the top of the
stack are replaced with the values corresponding to the
second child node.
Since the median distance calculation also uses a register
in order to decrease the length of logic paths, the result
of this calculation is available in the next clock cycle.
Therefore, a special one-bit register is set to signify that
this mode of operation is still in progress. In the next
clock cycle this register is reset, and the rest of the
operations are performed as described.

• Final phase of the algorithm – active when the node stack
is empty. While the value of the previously described
“delay” counter is greater than 0, no additional operations
are performed. Once the value of the counter reaches 0,
the output valid signal of the module is set to 1, while
the output point is simply a set of wires connected to
the register storing the current closest point to the input
point. The initial values of the stack are pushed onto the
empty stack to prepare the processing of the next input
point.

The block diagram in Fig. 5 depicts the generator’s design.
The inputs and outputs of this design adhere to the Ready/Valid
handshaking protocol. Apart from the ready and valid signals,
both the input and the output consist of a single k-dimensional
point represented as a series of k signed integers depicting
their respective coordinate values. The dimensionality of these
points, along with the structure of the point and tree ROMs,
depend on the generator’s parameters.

Algorithm logic

Points ROM Tree ROM

in_ready

in_valid

Parameterized components are marked in red

in_point 1st d.

in_point 2nd d.

in_point k-th d.
⋮

out_ready

out_valid

out_point 1st d.

out_point 2nd d.

out_point k-th d.
⋮

Stack

reg 0reg 1reg t
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Fig. 5. Interface of the implemented Chisel design showing its input, output,
and internals.
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IV. IMPLEMENTATION AND TESTING RESULTS

Testing of the generator is also performed using testing
facilities provided by Chisel, i.e. ChiselTest. All generator pa-
rameters are randomized during testing, and the ROMs are also
populated by appropriate randomly generated k-dimensional
trees. The output of generated instances for random inputs is
compared against the output of a k-d tree golden model written
in Scala. The distances of the outputs of Chisel instances are
compared with the distances of the outputs produced by the
respective Scala golden model class instances.

The Scala golden model of the k-dimensional tree has
also undergone rigorous testing. A list of random points is
generated after selecting a random number of dimensions for
the points. From the list of points and the desired number of
tree nodes an instance of the golden model class is created.

This “golden model” instance is then supplied with random
points as input. The output point’s distance from the input
point is compared to the distance of the closest point to the
input point from the list of points in the tree, which is obtained
by applying a simple brute-force exhaustive search algorithm.
Due to the order of nodes and points traversed not being the
same for the k-d tree model and the brute-force algorithm, only
distances of the respective closest points to the input point are
compared.

For additional testing and real in-hardware validation, var-
ious instances obtained from the design generator have been
synthesized and implemented onto a commercially available
FPGA development board. The board in question is Digilent’s
Arty A7 with Xilinx’s Artix-7 FPGA family. All instances
have been synthesized for a 100 MHz target clock frequency.

Resource utilization for the different generated instances is
shown in Table I. Slice LUT utilization is most influenced by
the bit width of the coordinates and k, the dimensionality of
the points. A more minor effect on slice LUT utilization is
exerted by the sizes of the point and tree ROMs. The number
of slice registers seems to be mostly influenced by the bit
width of the coordinates, followed by the dimensinoality of
the points. Number of dimensions k has an influence on both
Block RAM Tile and DSP multiplier counts, although the

TABLE I
FPGA RESOURCE UTILIZATION FOR GENERATED DESIGN INSTANCES

Generator Instance Parameters FPGA Resources
Data

Width Nodes Points k
Slice
LUTs

Slice
Regs

BRAM
Tiles

DSP
muls

8 bits 31 100 3 728 272 1 3
16 bits 31 100 3 383 288 1.5 7
24 bits 31 100 3 528 444 1.5 11
32 bits 31 100 3 706 412 1 19
16 bits 7 100 3 334 287 1.5 7
16 bits 15 100 3 328 288 1.5 7
16 bits 63 100 3 339 288 1.5 7
16 bits 31 50 3 326 271 1.5 7
16 bits 31 200 3 372 311 1.5 6
16 bits 31 100 2 339 232 1 6
16 bits 31 100 4 381 337 1.5 8
16 bits 31 100 5 453 393 2 9

greatest influence on the number of DSP multipliers is exerted
by point coordinate data bit width.

V. CONCLUSION

An approach to implementing a nearest neighbour search
algorithm on an FPGA hardware platform has been explored.
One of the key characteristics in this approach is in using
a pre-stored k-dimensional tree to perform nearest neighbour
search operations. Another is in using the Chisel hardware
design language to create a generator of instances that can
accommodate k-d trees with different structure parameters.

A variety of instances have undergone testing and additional
verification by implementing them on a commercial FPGA
development board. Apart from testing and verification, some
consideration has also been given to their utilization of re-
sources. This paper proves on an example case of the nearest
neighbour search algorithm that parameterizable design gen-
erators can be used to produce instances of AI and machine
learning hardware modules as an alternative to using CPU-
based implementations.
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