
  

Abstract—In recent years, machine learning has reached quite 

sophisticated level of usability within applications across various 

domains – ranging from booking reservations and media content 

delivery to business and healthcare. However, the deployment of 

machine learning models, together with parameter tuning and 

periodic training, which are necessary to maintain satisfiable 

performance, represent time consuming processes, requiring 

various types of skills - both DevOps and data analysis-related. 

In this paper, we leverage model-driven approach in synergy 

with code generation with aim to automatize the so-called 

MLOps activities, relying on ZenML framework for pipeline 

automation and Kubernetes for containerized task orchestration. 

On top of that, we leverage Blockchain for infrastructure 

provisioning. Our goal is to reduce the cognitive load of 

infrastructure and services management within systems relying 

on machine learning. The framework is evaluated in scenarios 

using PyTorch-based deep learning predictive models. According 

to the results, the proposed approach reduces both the time and 

skill required for successful MLOps activities. 

 
Index Terms—DevOps; Kubernetes; MLOps; PyTorch; 

Blockchain. 

  

 

I. INTRODUCTION 

Continuous integration and delivery have become standard 

in software engineering workflow within the last decade. The 

goal of so-called DevOps practice is to align the deployment 

of software artifacts with business goals which are enabled by 

them, so the customer’s organization can benefit from them as 

quickly as possible. However, operations related to underlying 

infrastructure management are becoming more and more 

complex, due to heterogeneity of services, devices and 

increasing performance demands. Therefore, due to fact that 

machine learning (ML) services are recognized as crucial 

enablers of novel usage scenarios across various domains, a 

distinct subfield with focus on them has emerged, known as 

MLOps [1-4]. It is an extension of now well-established 

DevOps paradigm with aspects specific to service delivery in 

machine learning, such as continuous model training for 

prediction performance improvement, rapid deployment and 

parameter tunning towards automated generation of complex 

ML task pipelines [1-4]. 

In this paper, the focus is on reducing the complexity of 

MLOps-related activities and service delivery relying on 

model-driven approach [5]. Moreover, the business-related 
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aspects of infrastructure resource provisioning and usage 

charging using blockchain by the provider are also 

considered. The main contributions of this paper are the 

following: 1) MLOps metamodel – defining the structure of 

user-created model instances representing machine learning 

pipelines with several distinct steps together with aspects 

related to its deployment 2) code generator – leverages the 

model for automated code generator covering several aspects: 

pipeline script, predictive model, infrastructure management 

3) blockchain-based transaction model making use of smart 

contracts for renting high-performance computing resources 

aiming accelerated machine learning. 

In our previous works, metamodel-based approach in 

synergy with ontologies was leveraged for automated 

container-based service deployment in Fog Computing [6]. 

On the other side, a similar method was adopted in [7] for 

generation of predictive models starting from high-level 

predictive problem descriptions aiming state-of-art mobile 

network infrastructure planning and management. 

II. BACKGROUND 

A. ZenML 

ZenML [8] is open-source, high-level Python framework 

for machine learning pipeline automation. It is available as 

Python library in form of function decorators and specific 

classes inside scripts, while it imposes pre-defined code 

structure. The overview of main ZenML-related concepts and 

terminology is given in Table I. 
TABLE I 

ZENML CONCEPTS OVERVIEW 

Concept Description 

Repository A special type of directory, declared used zenml 

init command. Each ZenML action must take place 

within a repository, which is created 

Step Single stage within ML flow, representing a node of 

in ML flow computation graph. Implementation-wise, 

they represent Python functions with typed 

parameters in signature for both arguments and return 

value. Decorator used is @step, while step result 

caching can be enabled using enable_cache=True 

parameter 

Pipeline A sequence of steps. It connects all the steps, their 

inputs and outputs. Decorator used is @pipeline. 

Moreover, it is possible to set the list of external 

libs/dependencies from .txt file can be done using 

requirements_file attribute of the decorator. It is 

run by invoking pipeline.run() method inside 

Python script. Optionally, a scheduler object can be 

assigned for periodic execution of certain steps 

enabling scenarios such as continuous model training. 
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Stack Represents environment and configuration of MLOps 

platform infrastructure. It consists of: artifact store, 

metadata store, container registry, orchestrator and 

custom step operators. Creating a new stack with 

desired parameters is done using stack register, 

while it is run using stack up command., which has 

to be done before running any pipeline. 

Artifact store Persistent storage of step results. 

Materializer Defines how data is passed between steps. 

Serialization and deserialization are used while 

storing/retrieving results. 

Metadata store Keeps the data related to pipeline, step and 

experiment configuration and references for tracking 

of inputs/outputs within artifact store created within 

ML pipeline. 

Orchestrator Component for scheduling and running pipeline steps 

Container 

registry 

Stores Docker images required for running the steps 

Custom step 

operator 

User-defined environments for running ML flow tasks 

within Docker containers 

Integration  Enable usage of various third-party tools enriching 

ML development like pytorch, tensorflow and 

sklearn. Apart from that, it also includes orchestrator-

enabled stacks, such as local-kubeflow (Kubernetes-

based) and airflow. 

Depiction of ZenML architecture showing how the 

previously mentioned concepts are related is given in Fig. 1. 

Fig. 1.  ZenML concepts and their relations. 

 

Additionally, Fig. 2 shows the programming workflow 

using ZenML. First, we initialize a repository inside the 

desired directory where we place our Python script. After that, 

in Python code we define the typical steps of ML flow: 1) 

importer – downloading and loading dataset 2) trainer – 

passing through dataset and updating model weights for new 

predictions 3) evaluator – estimates how good the prediction 

performance is, according to the given metric (accuracy for 

classification; mean relative error - MRE for regression). 

Moreover, we connect the steps in a sequence as shown 

within the pipeline object and finally run the pipeline object 

instance. 
 
 

 

 
 

 
 

Fig. 2.  ML pipeline creation using ZenML in Python. 

B. Kubernetes 

Kubernetes [9] represents an open-source platform whose 

goal is to enable deployment and management of 

containerized services run on multi-server clusters. 

Furthermore, it provides convenient access to useful features, 

such as scalability, fault-tolerance and declarative 

configuration. Table III gives an overview of key concepts 

within Kubernetes-based architectures.  
TABLE III 

KUBERNETES CONCEPTS OVERVIEW 

Concept Description 

Control plane Cluster management component, responsible for 

global decisions, and scheduling  

Node Worker machines within the cluster running 

containerized apps 

Pod Smallest deployable unit, which consists of one or 

more app containers. These containers share storage, 

network specification and config. Optionally, might 

include data volumes for persistent storage 

Service A logical set of pods 

Kubectl Comamnd-Line Interface (CLI) tool for running 

commands against Kubernetes cluster, such as: 

-Deployment (kubectl apply 

deployment.json and kubectl create 

deployment dep_name --

image=docker_image  

-Scaling up/down (kubectl scale --

replicas=num resource_name) 

-Retrieval of node, pod and service info (kubectl 

get pods, nodes, services) 

Despite the fact that Kubernetes provides automatic 

scheduling capabilities, there might be situations where 

deployment of pod has to be done on a specific node. In that 

case, we leverage node labels. The corresponding command 

for labelling a node has the following form: kubectl label 

nodes <node_name> label_name=label_value. After 

that, when we want to create a pod using YAML 

configuration file, it would be necessary to make use of 

nodeSelector property and set it as 

label_name:label_value. 
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Kubernetes-based architecture is depicted in Fig. 3. In this 

paper, we make use of containerized custom step operators in 

ZenML run as Kubernetes pods, which are actually containers 

running PyTorch code. Moreover, node labels are leveraged in 

order to have low-level scheduling control and determine 

where each of these steps will be executed, enabling 

additional flexibility. 

Fig. 3.  Kubernetes-based containerized app architecture. 

III. IMPLEMENTATION 

A. Workflow Overview 

Model-driven workflow of the proposed framework for 

automated ML-related task deployment is illustrated in Fig. 4. 

In the first step, user creates a deployment diagram model 

instance which describes the ML pipeline and underlying 

execution infrastructure details. After that, the model is 

parsed, so code generator constructs Python script containing 

the ML pipeline code relying on ZenML and PyTorch in 

synergy with numpy. Moreover, corresponding Kubernetes 

orchestrator commands are generated in order to ensure that 

distinct pipeline steps are executed on the desired cluster 

nodes. Additionally, the allocated resources are charged to the 

customer by parametrizing smart contracts for blockchain-

based transactions, while the price might vary due to presence 

of deep learning accelerator cards on some of the nodes. 

Finally, the generated machine learning Python script is 

executed on the allocated computing nodes. 

 

 
Fig. 4.  Blockchain-enabled model-driven MLOps workflow. 

 

B. MLOps Metamodel 

When it comes to adoption of model-driven engineering, 

we make use of metamodel which defines the structure of 

user-created deployment diagram (shown in Fig. 5). For 

implementation, Ecore [10] within Eclipse Modelling 

Framework (EMF) [11] in Java is used, which automatically 

generates all the auxiliary classes for model manipulation, 

together with convenient GUI-enabled editor. 

The highest-level concept is Pipeline, which consists of one 

or more machine learning tasks, referred to as Step. A Pipeline 

can be executed periodically for purpose of continuous 

training, which is defined by repeatTime property. Moreover, 

each of the Steps can be one of the following type with 

specific, distinct properties: Importer, Trainer or Evaluator. 

Importer represents ML task which downloads the 

corresponding dataset and opens the downloaded file. In this 

context, it is necessary to set URL corresponding to the 

location where dataset is stored online, denoted as onlineData. 

Otherwise, if dataset is local and already present on disk, 

another parameter is used – localData. When it comes to 

trainer step, it is possible to set its learning rate, number of 

batches, select the target implementation technology, but we 

make use of PyTorch in this paper. Each trainer can use pre-

created model, given by modelPath or it is necessary to define 

a custom neural network. For custom neural network, its 

architecture is described using Layer element, while each of 

them has type (such as Convolutional – in image classification 

or standard Fully Connected in Multi-Layer Perceptron), 

number of processing units (neurons) and activation function 

(such as ReLU, softmax, sigmoid). Finally, the performance 

metric used within Evaluator step depends on the type of 

machine learning task, and we cover two possibilities relevant 

to supervised learning as predictionType property of Pipeline 

– classification (Accuracy) and regression (Mean Relative 

Error). 

On the other side, the aspects of distinct Step deployment 

are covered by the metamodel as well. For each pipeline part, 

there is an attribute targetLabel, describing which worker 

node within Kubernetes cluster would be preferred for 

execution of pod created within custom step operator. 

Additionally, infrastructure executing the pipeline is 

represented as Cluster that consists of Nodes. For each Node, 

the following properties are customizable, such as label, 

location, IP address, accelerator (whether it has dedicated 

hardware for deep learning attached) and unit price 

(depending on the node performance). 

Fig. 5. UML class diagram of MLOps metamodel. 
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C. Code Generation 

The user-drawn deployment model is first parsed and then 

traversed relying on Ecore-generated classes. Pipeline element 

and iterated for each of the contained steps. When it comes to 

each step, it is necessary to get the target label and insert it 

into nodeSelector section within Kubernetes deployment 

YAML file. After that, depending on the step type, 

corresponding template is used. For importer steps, it is only 

necessary to change the path where pre-created model is 

located. When it comes to trainer, it contains model training 

loop iterating for given number of epochs through batch 

number of dataset samples and desired learning rate (α) value. 

For evaluator step, the corresponding method is chosen 

according to the type of prediction problem. Additionally, the 

leasing of resources is charged to the customer by valorizing 

blockchain smart contract with unit price of the selected node. 

Finally, the previously created Kubernetes YAML describing 

step deployment is applied, so the pod with Docker container 

running ML task inside is spawned on the selected node. 

Pseudocode of the code generation procedure is given in 

Table IV. 
TABLE IV 

CODE GENERATION PSEUDOCODE 

 

D. ZenML pipeline Relying on PyTorch Deep Learning 

Models 

Deep learning refers to approach in artificial intelligence 

making use of neural networks with one or many hidden 

layers between the inputs and outputs. PyTorch [12] is library 

for Python which covers the required set of capabilities for 

deep learning: tensor manipulation and high-level object-

oriented representation of both models and datasets. In Fig. 6, 

an excerpt of typical ZenML pipeline relying on PyTorch 

models is given. This kind of Python script actually represents 

one of the outputs of code generator. When it comes to neural 

network models in PyTorch, their capabilities are 

encapsulated within Module class which has to be inherited by 

any custom model. In this class, within the constructor we 

define neural network architecture (layers, nodes and 

activation functions), while forward connects the layers 

defining how data passes through neural network. In given 

example, we use MNIST dataset [13] of handwritten digits for 

purpose of classification.  

Fig. 6. ZenML PyTorch training script for MNIST dataset. 

Input:  MLOps deployment model 

Output:  Python script, Kubernetes commands, Smart contract 
Steps: 

1. deployment.elements:=parse(model); 

2. Retrieve pipeline from deployment.elements; 
3. For each step in pipeline 

4.     Create nodeSelector for step.targetLabel; 

5.     If(step is Importer) 
6.         Generate importer loading dataset from step.localData or onlineData; 

7.     If(step is Trainer) 

8.        Load model from step.modelPath; 
9.        Generate TrainerCode(step.epochs, step.batch, step.alpha); 

10.     If(step is Evaluator) 

11.        If pipeline.predictionType is regression 
12.            Use Mean Relative Error; 

13.        Else  

14.            Use Accuracy; 
15.    Get node.unitPrice; 

16.    Calculate total leasing price as step.estimatedTime*step.node.unitPrice 

17.    Genrate smart contract between pipeline.customerId and 

step.node.providerId for total price; 

18.    Apply Kubernetes deployment for pod with step.id; 

19. End for each 
20. End 

 

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        self.flat_network = nn.Sequential(

            nn.Flatten(),

            nn.Linear(784, 311),

            nn.ReLU(),

            nn.Linear(311,10)

        )

        # fully connected layer, output 10 classes

        self.out = nn.Linear(10, 10)

    def forward(self, x):

        x = torch.unsqueeze(x, dim=0)        

        x = self.flat_network(x)

        x = self.out(x)

        output = self.out(x)

        return output

def get_data_loader_from_np(X: np.ndarray, y: np.ndarray) -> DataLoader:

    tensor_x = torch.Tensor(X)  # transform to torch tensor

    tensor_y = torch.Tensor(y).type(torch.LongTensor)

    torch_dataset = TensorDataset(tensor_x, tensor_y) 

    torch_dataloader = DataLoader(torch_dataset) 

    return torch_dataloader

@step(custom_step_operator="trainer1", enable_cache=False)

def torch_trainer(

    X_train: np.ndarray,

    y_train: np.ndarray,

) -> nn.Module:

    train_loader = get_data_loader_from_np(x_train, y_train)

    model = Net().to(DEVICE)

    optimizer = optim.Adadelta(model.parameters(), lr=0.001)

    scheduler = StepLR(optimizer, step_size=1, gamma=0.01)

    for epoch in range(1, num_epochs):

        model.train()

        for batch_idx, (data, target) in enumerate(train_loader):

            data, target = data.to(DEVICE), target.to(DEVICE)

            optimizer.zero_grad()

            output = model(data)

            loss = F.nll_loss(output, target)

            loss.backward()

            optimizer.step()

        scheduler.step()

    return model

@step(custom_step_operator="evaluator1", enable_cache=False)

def classification_evaluator(

    X_test: np.ndarray,

    y_test: np.ndarray,

    model: nn.Module,

) -> float:

    model.eval()

    test_loader = get_data_loader_from_np(x_test, y_test)

    test_loss = 0

    correct = 0

    with torch.no_grad():

        for data, target in test_loader:

            data, target = data.to(DEVICE), target.to(DEVICE)

            output = model(data)

            test_loss += F.nll_loss(

                output, target, reduction="sum"

            ).item() 

            pred = output.argmax(

                dim=1, keepdim=True

            )  

            correct += pred.eq(target.view_as(pred)).sum().item()

    return correct / len(test_loader.dataset)

@step(custom_step_operator="importer1", enable_cache=False)

def my_importer() -> Output(

    x_train=np.ndarray, y_train=np.ndarray, x_test=np.ndarray, y_test=np.ndarray

):

    (X_train, y_train), (

        X_test,

        y_test,

    ) = load_data(dataset_path)

    return x_train, y_train, x_test, y_test

@pipeline(required_integrations=[PYTORCH])

def my_pipeline(

    importer,

    trainer,

    evaluator,

):

    x_train, y_train, x_test, y_test = importer()

    model = trainer(x_train=x_train, y_train=y_train)

    evaluator(x_test=x_test, y_test=y_test, model=model)

continous_train = Schedule(

start_time = datetime.now(),

end_time = datetime.now() + timedelta(minutes = 5),

interval_second = 60

)

if __name__ == "__main__":

    torch_pipeline = my_pipeline(

        importer=my_importer(),

        trainer=torch_trainer(),

        evaluator=classification_evaluator(),

    )

    torch_pipeline.run(schedule = continous_train)
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E. Resource Leasing Relying on Solidity Smart Contract 

Blockchain enables decentralized approach to immutable 

and irreversible transactions relying on approval by huge 

network of computer nodes, making it secure and reliable. On 

the other side, smart contracts define actions executed within 

protocol for realization of blockchain-based transaction. In 

this paper, we make se of Ethereum blockchain in synergy 

with Solidity smart contracts [14]. Solidity code of the 

underlying transaction mechanism for resource leasing in 

context of ML task execution is given in Fig. 7. As it can be 

seen, the information stored as part of transaction consists of 

customerId, providerId and identifier of node which will 

execute some ML task which represents a step within 

pipeline. First, the total price is calculated by multiplying 

unitPrice and estimatedTime required for step execution. 

After that, the transaction itself is performed by transferring 

the previously calculated total amount of tmokens from 

customer’s to provider’s account.  

Fig. 7.  Solidity smart contract for ML task resource leasing. 

 

IV. EXPERIMENTS AND EVALUATION 

For evaluation of the proposed framework, three publicly 

available image classification datasets were used. The first 

two tackle image classification problem: 1) yoga pose 

determination (our previous work presented in [15]) - 5 poses 

in dataset of 1551 images 2) MNIST [13]  – 70 000 images of 

handwritten digits 0-9. On the other side, a regression 

problem of service demand prediction in telco networks from 

[7] was considered as the third case. In all of the experiments, 

test was 20% of the overall dataset with no overlapping 

samples from training set. The presented experiments were 

run on MacBook Pro (16-inch, 2019) laptop, equipped with 

2.3GHz 8-core Intel Core i9 CPU, 16GB of DDR4 memory, 

1TB SSD and Intel UHD Graphics 630 with 1.5GB VRAM. 

On the other side, Kubernetes cluster consisted of two more 

Ubuntu machines equipped with Intel i5 CPU, 8GB DDR4 

RAM and 4GB GPU.  

The results of the experiments are given in Table IV. 

Several aspects were considered: code generation time, model 

training time, speed-up compared to manual pipeline creation 

including model creation (moderately experienced machine 

learning engineer) and achieved prediction performance 

(MRE for regression, accuracy for classification). 
 

 

 
 

 

TABLE IV 

EXPERIMENT RESULTS 

Case Code 

generation 

[s] 

Model 

training 

[s] 

Speed-

up 

[times] 

Performance 

[%] 

Manual 

pipe  

[s] 

Yoga 

pose 

[15] 

 

0.911 317 45 Accuracy 

73% 

104 

MNIST 

[13] 

0.87 124 36 Accuracy 

96% 

91 

Telco 

[7] 

0.93 27 21 MRE 

9% 

88 

As it can be seen, in all the cases, the achieved speed-up 

was more than 20 times compared to traditional approach 

involving manual Python code writing from scratch. 

However, the speed-up is more significant is case of more 

complex models based on convolutional neural networks with 

huge number of layers – it was yoga pose determination. In 

our case, the only manual operation is pipeline deployment 

model creation using GUI tool, which took about 1.5 minutes 

in our experiments. All the models show almost identical 

performance to traditional counterparts, as expected. When it 

comes to code generation, execution time does not exceed 1 

second in the presented case studies. Finally, the overhead of 

model training compared to execution without MLOps 

framework is around 15% when run on single machine and 

k3d [16] local Kubernetes cluster, but can be compensated by 

smart scheduling techniques, especially for larger datasets. 

V. CONCLUSION AND FUTURE WORK 

According to the achieved experimental results, the 

proposed model-driven approach to MLOps leveraging 

automated code generation further speeds up the development 

of machine learning services, required administration 

operations and their delivery to the customers. Moreover, it 

also accelerates resource leasing protocols adopting 

blockchain-based smart contracts for transactions and their 

automated generation. Finally, the adoption of intuitive 

model-driven tools opens new horizons of machine learning 

service adoption and management even by persons without 

expertise in this area. 

However, there are several possible research directions in 

future. First, we would work on integration of model-driven 

resource allocation mechanisms relying on multi-objective 

optimization approach [17] for energy and cost-efficient ML 

pipeline task scheduling. Moreover, the incorporation more 

sophisticated federated learning mechanisms and neural 

network layer splitting strategies across multiple cluster nodes 

aiming time-critical scenarios would be considered as well. 
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contract LeasingInfrastructure {

   address public providerId;

   uint32 public nodeId;   

   uint32 public stepId;

   mapping (address => uint) public balances;

   

   event Sent(address customerId, address providerId, uint total);

   function leaseNode(address received, uint unitPrice, uint estimateTime) public {

      total = uintPrice*estimatedTime;

  require(total <= balances[msg.sender], "Not enough tokens");

      balances[msg.customerId] -= total;

      balances[providerId] += total;

      emit Sent(msg.customerId, providerId, total);

   }

}
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