

Abstract—In recent years, machine learning has reached quite

sophisticated level of usability within applications across various

domains – ranging from booking reservations and media content

delivery to business and healthcare. However, the deployment of

machine learning models, together with parameter tuning and

periodic training, which are necessary to maintain satisfiable

performance, represent time consuming processes, requiring

various types of skills - both DevOps and data analysis-related.

In this paper, we leverage model-driven approach in synergy

with code generation with aim to automatize the so-called

MLOps activities, relying on ZenML framework for pipeline

automation and Kubernetes for containerized task orchestration.

On top of that, we leverage Blockchain for infrastructure

provisioning. Our goal is to reduce the cognitive load of

infrastructure and services management within systems relying

on machine learning. The framework is evaluated in scenarios

using PyTorch-based deep learning predictive models. According

to the results, the proposed approach reduces both the time and

skill required for successful MLOps activities.

Index Terms—DevOps; Kubernetes; MLOps; PyTorch;

Blockchain.

I. INTRODUCTION

Continuous integration and delivery have become standard

in software engineering workflow within the last decade. The

goal of so-called DevOps practice is to align the deployment

of software artifacts with business goals which are enabled by

them, so the customer’s organization can benefit from them as

quickly as possible. However, operations related to underlying

infrastructure management are becoming more and more

complex, due to heterogeneity of services, devices and

increasing performance demands. Therefore, due to fact that

machine learning (ML) services are recognized as crucial

enablers of novel usage scenarios across various domains, a

distinct subfield with focus on them has emerged, known as

MLOps [1-4]. It is an extension of now well-established

DevOps paradigm with aspects specific to service delivery in

machine learning, such as continuous model training for

prediction performance improvement, rapid deployment and

parameter tunning towards automated generation of complex

ML task pipelines [1-4].

In this paper, the focus is on reducing the complexity of

MLOps-related activities and service delivery relying on

model-driven approach [5]. Moreover, the business-related

Nenad Petrović is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
nenad.petrovic@elfak.ni.ac.rs), (https://orcid.org/0000-0003-2264-7369)

aspects of infrastructure resource provisioning and usage

charging using blockchain by the provider are also

considered. The main contributions of this paper are the

following: 1) MLOps metamodel – defining the structure of

user-created model instances representing machine learning

pipelines with several distinct steps together with aspects

related to its deployment 2) code generator – leverages the

model for automated code generator covering several aspects:

pipeline script, predictive model, infrastructure management

3) blockchain-based transaction model making use of smart

contracts for renting high-performance computing resources

aiming accelerated machine learning.

In our previous works, metamodel-based approach in

synergy with ontologies was leveraged for automated

container-based service deployment in Fog Computing [6].

On the other side, a similar method was adopted in [7] for

generation of predictive models starting from high-level

predictive problem descriptions aiming state-of-art mobile

network infrastructure planning and management.

II. BACKGROUND

A. ZenML

ZenML [8] is open-source, high-level Python framework

for machine learning pipeline automation. It is available as

Python library in form of function decorators and specific

classes inside scripts, while it imposes pre-defined code

structure. The overview of main ZenML-related concepts and

terminology is given in Table I.
TABLE I

ZENML CONCEPTS OVERVIEW

Concept Description

Repository A special type of directory, declared used zenml

init command. Each ZenML action must take place

within a repository, which is created

Step Single stage within ML flow, representing a node of

in ML flow computation graph. Implementation-wise,

they represent Python functions with typed

parameters in signature for both arguments and return

value. Decorator used is @step, while step result

caching can be enabled using enable_cache=True

parameter

Pipeline A sequence of steps. It connects all the steps, their

inputs and outputs. Decorator used is @pipeline.

Moreover, it is possible to set the list of external

libs/dependencies from .txt file can be done using

requirements_file attribute of the decorator. It is

run by invoking pipeline.run() method inside

Python script. Optionally, a scheduler object can be

assigned for periodic execution of certain steps

enabling scenarios such as continuous model training.

Model-Driven Approach to Blockchain-Enabled

MLOps

Nenad Petrović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 1 of 6 ISBN 978-86-7466-930-3

Stack Represents environment and configuration of MLOps

platform infrastructure. It consists of: artifact store,

metadata store, container registry, orchestrator and

custom step operators. Creating a new stack with

desired parameters is done using stack register,

while it is run using stack up command., which has

to be done before running any pipeline.

Artifact store Persistent storage of step results.

Materializer Defines how data is passed between steps.

Serialization and deserialization are used while

storing/retrieving results.

Metadata store Keeps the data related to pipeline, step and

experiment configuration and references for tracking

of inputs/outputs within artifact store created within

ML pipeline.

Orchestrator Component for scheduling and running pipeline steps

Container

registry

Stores Docker images required for running the steps

Custom step

operator

User-defined environments for running ML flow tasks

within Docker containers

Integration Enable usage of various third-party tools enriching

ML development like pytorch, tensorflow and

sklearn. Apart from that, it also includes orchestrator-

enabled stacks, such as local-kubeflow (Kubernetes-

based) and airflow.

Depiction of ZenML architecture showing how the

previously mentioned concepts are related is given in Fig. 1.

Fig. 1. ZenML concepts and their relations.

Additionally, Fig. 2 shows the programming workflow

using ZenML. First, we initialize a repository inside the

desired directory where we place our Python script. After that,

in Python code we define the typical steps of ML flow: 1)

importer – downloading and loading dataset 2) trainer –

passing through dataset and updating model weights for new

predictions 3) evaluator – estimates how good the prediction

performance is, according to the given metric (accuracy for

classification; mean relative error - MRE for regression).

Moreover, we connect the steps in a sequence as shown

within the pipeline object and finally run the pipeline object

instance.

Fig. 2. ML pipeline creation using ZenML in Python.

B. Kubernetes

Kubernetes [9] represents an open-source platform whose

goal is to enable deployment and management of

containerized services run on multi-server clusters.

Furthermore, it provides convenient access to useful features,

such as scalability, fault-tolerance and declarative

configuration. Table III gives an overview of key concepts

within Kubernetes-based architectures.
TABLE III

KUBERNETES CONCEPTS OVERVIEW

Concept Description

Control plane Cluster management component, responsible for

global decisions, and scheduling

Node Worker machines within the cluster running

containerized apps

Pod Smallest deployable unit, which consists of one or

more app containers. These containers share storage,

network specification and config. Optionally, might

include data volumes for persistent storage

Service A logical set of pods

Kubectl Comamnd-Line Interface (CLI) tool for running

commands against Kubernetes cluster, such as:

-Deployment (kubectl apply

deployment.json and kubectl create

deployment dep_name --

image=docker_image

-Scaling up/down (kubectl scale --

replicas=num resource_name)

-Retrieval of node, pod and service info (kubectl

get pods, nodes, services)

Despite the fact that Kubernetes provides automatic

scheduling capabilities, there might be situations where

deployment of pod has to be done on a specific node. In that

case, we leverage node labels. The corresponding command

for labelling a node has the following form: kubectl label

nodes <node_name> label_name=label_value. After

that, when we want to create a pod using YAML

configuration file, it would be necessary to make use of

nodeSelector property and set it as

label_name:label_value.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 2 of 6 ISBN 978-86-7466-930-3

Kubernetes-based architecture is depicted in Fig. 3. In this

paper, we make use of containerized custom step operators in

ZenML run as Kubernetes pods, which are actually containers

running PyTorch code. Moreover, node labels are leveraged in

order to have low-level scheduling control and determine

where each of these steps will be executed, enabling

additional flexibility.

Fig. 3. Kubernetes-based containerized app architecture.

III. IMPLEMENTATION

A. Workflow Overview

Model-driven workflow of the proposed framework for

automated ML-related task deployment is illustrated in Fig. 4.

In the first step, user creates a deployment diagram model

instance which describes the ML pipeline and underlying

execution infrastructure details. After that, the model is

parsed, so code generator constructs Python script containing

the ML pipeline code relying on ZenML and PyTorch in

synergy with numpy. Moreover, corresponding Kubernetes

orchestrator commands are generated in order to ensure that

distinct pipeline steps are executed on the desired cluster

nodes. Additionally, the allocated resources are charged to the

customer by parametrizing smart contracts for blockchain-

based transactions, while the price might vary due to presence

of deep learning accelerator cards on some of the nodes.

Finally, the generated machine learning Python script is

executed on the allocated computing nodes.

Fig. 4. Blockchain-enabled model-driven MLOps workflow.

B. MLOps Metamodel

When it comes to adoption of model-driven engineering,

we make use of metamodel which defines the structure of

user-created deployment diagram (shown in Fig. 5). For

implementation, Ecore [10] within Eclipse Modelling

Framework (EMF) [11] in Java is used, which automatically

generates all the auxiliary classes for model manipulation,

together with convenient GUI-enabled editor.

The highest-level concept is Pipeline, which consists of one

or more machine learning tasks, referred to as Step. A Pipeline

can be executed periodically for purpose of continuous

training, which is defined by repeatTime property. Moreover,

each of the Steps can be one of the following type with

specific, distinct properties: Importer, Trainer or Evaluator.

Importer represents ML task which downloads the

corresponding dataset and opens the downloaded file. In this

context, it is necessary to set URL corresponding to the

location where dataset is stored online, denoted as onlineData.

Otherwise, if dataset is local and already present on disk,

another parameter is used – localData. When it comes to

trainer step, it is possible to set its learning rate, number of

batches, select the target implementation technology, but we

make use of PyTorch in this paper. Each trainer can use pre-

created model, given by modelPath or it is necessary to define

a custom neural network. For custom neural network, its

architecture is described using Layer element, while each of

them has type (such as Convolutional – in image classification

or standard Fully Connected in Multi-Layer Perceptron),

number of processing units (neurons) and activation function

(such as ReLU, softmax, sigmoid). Finally, the performance

metric used within Evaluator step depends on the type of

machine learning task, and we cover two possibilities relevant

to supervised learning as predictionType property of Pipeline

– classification (Accuracy) and regression (Mean Relative

Error).

On the other side, the aspects of distinct Step deployment

are covered by the metamodel as well. For each pipeline part,

there is an attribute targetLabel, describing which worker

node within Kubernetes cluster would be preferred for

execution of pod created within custom step operator.

Additionally, infrastructure executing the pipeline is

represented as Cluster that consists of Nodes. For each Node,

the following properties are customizable, such as label,

location, IP address, accelerator (whether it has dedicated

hardware for deep learning attached) and unit price

(depending on the node performance).

Fig. 5. UML class diagram of MLOps metamodel.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 3 of 6 ISBN 978-86-7466-930-3

C. Code Generation

The user-drawn deployment model is first parsed and then

traversed relying on Ecore-generated classes. Pipeline element

and iterated for each of the contained steps. When it comes to

each step, it is necessary to get the target label and insert it

into nodeSelector section within Kubernetes deployment

YAML file. After that, depending on the step type,

corresponding template is used. For importer steps, it is only

necessary to change the path where pre-created model is

located. When it comes to trainer, it contains model training

loop iterating for given number of epochs through batch

number of dataset samples and desired learning rate (α) value.

For evaluator step, the corresponding method is chosen

according to the type of prediction problem. Additionally, the

leasing of resources is charged to the customer by valorizing

blockchain smart contract with unit price of the selected node.

Finally, the previously created Kubernetes YAML describing

step deployment is applied, so the pod with Docker container

running ML task inside is spawned on the selected node.

Pseudocode of the code generation procedure is given in

Table IV.
TABLE IV

CODE GENERATION PSEUDOCODE

D. ZenML pipeline Relying on PyTorch Deep Learning

Models

Deep learning refers to approach in artificial intelligence

making use of neural networks with one or many hidden

layers between the inputs and outputs. PyTorch [12] is library

for Python which covers the required set of capabilities for

deep learning: tensor manipulation and high-level object-

oriented representation of both models and datasets. In Fig. 6,

an excerpt of typical ZenML pipeline relying on PyTorch

models is given. This kind of Python script actually represents

one of the outputs of code generator. When it comes to neural

network models in PyTorch, their capabilities are

encapsulated within Module class which has to be inherited by

any custom model. In this class, within the constructor we

define neural network architecture (layers, nodes and

activation functions), while forward connects the layers

defining how data passes through neural network. In given

example, we use MNIST dataset [13] of handwritten digits for

purpose of classification.

Fig. 6. ZenML PyTorch training script for MNIST dataset.

Input: MLOps deployment model

Output: Python script, Kubernetes commands, Smart contract
Steps:

1. deployment.elements:=parse(model);

2. Retrieve pipeline from deployment.elements;
3. For each step in pipeline

4. Create nodeSelector for step.targetLabel;

5. If(step is Importer)
6. Generate importer loading dataset from step.localData or onlineData;

7. If(step is Trainer)

8. Load model from step.modelPath;
9. Generate TrainerCode(step.epochs, step.batch, step.alpha);

10. If(step is Evaluator)

11. If pipeline.predictionType is regression
12. Use Mean Relative Error;

13. Else

14. Use Accuracy;
15. Get node.unitPrice;

16. Calculate total leasing price as step.estimatedTime*step.node.unitPrice

17. Genrate smart contract between pipeline.customerId and

step.node.providerId for total price;

18. Apply Kubernetes deployment for pod with step.id;

19. End for each
20. End

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.flat_network = nn.Sequential(

 nn.Flatten(),

 nn.Linear(784, 311),

 nn.ReLU(),

 nn.Linear(311,10)

)

 # fully connected layer, output 10 classes

 self.out = nn.Linear(10, 10)

 def forward(self, x):

 x = torch.unsqueeze(x, dim=0)

 x = self.flat_network(x)

 x = self.out(x)

 output = self.out(x)

 return output

def get_data_loader_from_np(X: np.ndarray, y: np.ndarray) -> DataLoader:

 tensor_x = torch.Tensor(X) # transform to torch tensor

 tensor_y = torch.Tensor(y).type(torch.LongTensor)

 torch_dataset = TensorDataset(tensor_x, tensor_y)

 torch_dataloader = DataLoader(torch_dataset)

 return torch_dataloader

@step(custom_step_operator="trainer1", enable_cache=False)

def torch_trainer(

 X_train: np.ndarray,

 y_train: np.ndarray,

) -> nn.Module:

 train_loader = get_data_loader_from_np(x_train, y_train)

 model = Net().to(DEVICE)

 optimizer = optim.Adadelta(model.parameters(), lr=0.001)

 scheduler = StepLR(optimizer, step_size=1, gamma=0.01)

 for epoch in range(1, num_epochs):

 model.train()

 for batch_idx, (data, target) in enumerate(train_loader):

 data, target = data.to(DEVICE), target.to(DEVICE)

 optimizer.zero_grad()

 output = model(data)

 loss = F.nll_loss(output, target)

 loss.backward()

 optimizer.step()

 scheduler.step()

 return model

@step(custom_step_operator="evaluator1", enable_cache=False)

def classification_evaluator(

 X_test: np.ndarray,

 y_test: np.ndarray,

 model: nn.Module,

) -> float:

 model.eval()

 test_loader = get_data_loader_from_np(x_test, y_test)

 test_loss = 0

 correct = 0

 with torch.no_grad():

 for data, target in test_loader:

 data, target = data.to(DEVICE), target.to(DEVICE)

 output = model(data)

 test_loss += F.nll_loss(

 output, target, reduction="sum"

).item()

 pred = output.argmax(

 dim=1, keepdim=True

)

 correct += pred.eq(target.view_as(pred)).sum().item()

 return correct / len(test_loader.dataset)

@step(custom_step_operator="importer1", enable_cache=False)

def my_importer() -> Output(

 x_train=np.ndarray, y_train=np.ndarray, x_test=np.ndarray, y_test=np.ndarray

):

 (X_train, y_train), (

 X_test,

 y_test,

) = load_data(dataset_path)

 return x_train, y_train, x_test, y_test

@pipeline(required_integrations=[PYTORCH])

def my_pipeline(

 importer,

 trainer,

 evaluator,

):

 x_train, y_train, x_test, y_test = importer()

 model = trainer(x_train=x_train, y_train=y_train)

 evaluator(x_test=x_test, y_test=y_test, model=model)

continous_train = Schedule(

start_time = datetime.now(),

end_time = datetime.now() + timedelta(minutes = 5),

interval_second = 60

)

if __name__ == "__main__":

 torch_pipeline = my_pipeline(

 importer=my_importer(),

 trainer=torch_trainer(),

 evaluator=classification_evaluator(),

)

 torch_pipeline.run(schedule = continous_train)

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 4 of 6 ISBN 978-86-7466-930-3

E. Resource Leasing Relying on Solidity Smart Contract

Blockchain enables decentralized approach to immutable

and irreversible transactions relying on approval by huge

network of computer nodes, making it secure and reliable. On

the other side, smart contracts define actions executed within

protocol for realization of blockchain-based transaction. In

this paper, we make se of Ethereum blockchain in synergy

with Solidity smart contracts [14]. Solidity code of the

underlying transaction mechanism for resource leasing in

context of ML task execution is given in Fig. 7. As it can be

seen, the information stored as part of transaction consists of

customerId, providerId and identifier of node which will

execute some ML task which represents a step within

pipeline. First, the total price is calculated by multiplying

unitPrice and estimatedTime required for step execution.

After that, the transaction itself is performed by transferring

the previously calculated total amount of tmokens from

customer’s to provider’s account.

Fig. 7. Solidity smart contract for ML task resource leasing.

IV. EXPERIMENTS AND EVALUATION

For evaluation of the proposed framework, three publicly

available image classification datasets were used. The first

two tackle image classification problem: 1) yoga pose

determination (our previous work presented in [15]) - 5 poses

in dataset of 1551 images 2) MNIST [13] – 70 000 images of

handwritten digits 0-9. On the other side, a regression

problem of service demand prediction in telco networks from

[7] was considered as the third case. In all of the experiments,

test was 20% of the overall dataset with no overlapping

samples from training set. The presented experiments were

run on MacBook Pro (16-inch, 2019) laptop, equipped with

2.3GHz 8-core Intel Core i9 CPU, 16GB of DDR4 memory,

1TB SSD and Intel UHD Graphics 630 with 1.5GB VRAM.

On the other side, Kubernetes cluster consisted of two more

Ubuntu machines equipped with Intel i5 CPU, 8GB DDR4

RAM and 4GB GPU.

The results of the experiments are given in Table IV.

Several aspects were considered: code generation time, model

training time, speed-up compared to manual pipeline creation

including model creation (moderately experienced machine

learning engineer) and achieved prediction performance

(MRE for regression, accuracy for classification).

TABLE IV

EXPERIMENT RESULTS

Case Code

generation

[s]

Model

training

[s]

Speed-

up

[times]

Performance

[%]

Manual

pipe

[s]

Yoga

pose

[15]

0.911 317 45 Accuracy

73%

104

MNIST

[13]

0.87 124 36 Accuracy

96%

91

Telco

[7]

0.93 27 21 MRE

9%

88

As it can be seen, in all the cases, the achieved speed-up

was more than 20 times compared to traditional approach

involving manual Python code writing from scratch.

However, the speed-up is more significant is case of more

complex models based on convolutional neural networks with

huge number of layers – it was yoga pose determination. In

our case, the only manual operation is pipeline deployment

model creation using GUI tool, which took about 1.5 minutes

in our experiments. All the models show almost identical

performance to traditional counterparts, as expected. When it

comes to code generation, execution time does not exceed 1

second in the presented case studies. Finally, the overhead of

model training compared to execution without MLOps

framework is around 15% when run on single machine and

k3d [16] local Kubernetes cluster, but can be compensated by

smart scheduling techniques, especially for larger datasets.

V. CONCLUSION AND FUTURE WORK

According to the achieved experimental results, the

proposed model-driven approach to MLOps leveraging

automated code generation further speeds up the development

of machine learning services, required administration

operations and their delivery to the customers. Moreover, it

also accelerates resource leasing protocols adopting

blockchain-based smart contracts for transactions and their

automated generation. Finally, the adoption of intuitive

model-driven tools opens new horizons of machine learning

service adoption and management even by persons without

expertise in this area.

However, there are several possible research directions in

future. First, we would work on integration of model-driven

resource allocation mechanisms relying on multi-objective

optimization approach [17] for energy and cost-efficient ML

pipeline task scheduling. Moreover, the incorporation more

sophisticated federated learning mechanisms and neural

network layer splitting strategies across multiple cluster nodes

aiming time-critical scenarios would be considered as well.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of

Serbia.

contract LeasingInfrastructure {

 address public providerId;

 uint32 public nodeId;

 uint32 public stepId;

 mapping (address => uint) public balances;

 event Sent(address customerId, address providerId, uint total);

 function leaseNode(address received, uint unitPrice, uint estimateTime) public {

 total = uintPrice*estimatedTime;

 require(total <= balances[msg.sender], "Not enough tokens");

 balances[msg.customerId] -= total;

 balances[providerId] += total;

 emit Sent(msg.customerId, providerId, total);

 }

}

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 5 of 6 ISBN 978-86-7466-930-3

REFERENCES

[1] G. Symeonidis, E. Nerantzis, A. Kazakis and G. A. Papakostas,

"MLOps - Definitions, Tools and Challenges," 2022 IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC),

pp. 453-460, 2022. https://doi.org/10.1109/CCWC54503.2022.9720902

[2] S. Moreschini, F. Lomio, D. Hästbacka, D. Taibi, "MLOps for
evolvable AI intensive software systems”, IEEE International

Conference on Software Analysis, Evolution and Reengineering 2022,

pp. 1-2, 2022.
[3] D. Kreuzberger, N. Kühl, S. Hirschl, “Machine Learning Operations

(MLOps): Overview, Definition, and Architecture”, preprint, 2022.

[4] D. A. Tamburri, “Sustainable MLOps: Trends and Challenges”, 2020
22nd International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC), pp. 17-23, 2020.

https://doi.org/10.1109/SYNASC51798.2020.00015
[5] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software

Engineering in Practice, 2nd Edition, Morgan & Claypool Publishers,

2017.
[6] N. Petrovic, M. Tosic, “SMADA-Fog: Semantic model driven approach

to deployment and adaptivity in Fog Computing”, Simulation Modelling

Practice and Theory, 102033, pp. 1-25, 2019.
https://doi.org/10.1016/j.simpat.2019.102033

[7] D. Krstić, N. Petrović, I. Al-Azzoni, “Model-Driven Approach to

Fading-Aware Wireless Network Planning Leveraging Multiobjective
Optimization and Deep Learning”, Mathematical Problems in

Engineering, vol. 2022, 4140522, Special Issue: Mathematical

Modelling of Data Transmission in Next Generation Wireless Systems,

2022, pp. 1-23, 2022. https://doi.org/10.1155/2022/4140522
[8] ZenML [online]. Available on: https://zenml.io/, last accessed:

08/05/2022.

[9] Kuberentes [online]. Available on: https://kubernetes.io/, last accessed:
08/05/2022.

[10] Eclipse Modeling Framework [online]. Available on:

https://www.eclipse.org/modeling/emf/, last accessed: 08/05/2022.
[11] Ecore [online]. Available on: https://wiki.eclipse.org/Ecore, last

accessed: 08/05/2022.

[12] E. Stevens, L. Antiga, T. Viehmann, Deep Learning with PyTorch,
Manning Publications, 2020

[13] The MNIST database of handwritten digits [online]. Available on:

http://yann.lecun.com/exdb/mnist/ , last accessed: 08/05/2022.
[14] Solidity [online]. Available on: https://docs.soliditylang.org/en/v0.8.13/,

last accessed: 08/05/2022.

[15] M. Radenković, V. Nejković, N. Petrović, “Adopting AR and Deep
Learning for Gamified Fitness Mobile Apps: Yoga Trainer Case Study”,

AIIT 2021 International conference on Applied Internet and Information

Technologies, pp. 167-171, 2021.
[16] K3d [online]. Available on: https://k3d.io/v5.4.1/ , last accessed:

08/05/2022.

[17] I. Al-Azzoni, J. Blank, N. Petrović, “A Model-Driven Approach for
Solving the Software Component Allocation Problem”, Algorithms

2021; 14(12):354, pp. 1-19, 2021. https://doi.org/10.3390/a14120354

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 6 of 6 ISBN 978-86-7466-930-3

https://doi.org/10.1109/CCWC54503.2022.9720902
https://doi.org/10.1109/SYNASC51798.2020.00015
https://doi.org/10.1016/j.simpat.2019.102033
https://doi.org/10.1155/2022/4140522
https://zenml.io/
https://kubernetes.io/
https://www.eclipse.org/modeling/emf/
http://yann.lecun.com/exdb/mnist/
https://docs.soliditylang.org/en/v0.8.13/
https://k3d.io/v5.4.1/
https://doi.org/10.3390/a14120354

