

Abstract— Digital television (DTV) software runs on various

hardware platforms, from low-cost low-performance devices to

high-end devices that could compare with modern smartphones

and PC configurations. The development quality depends on the

tools available for the target platform. A new approach was

taken to improve development by moving to the PC platform to

avoid this dependency. The benefits are apparent, but it comes

with some constraints. Typical examples are components

available for target platforms but not PC platforms for security

and legal reasons. One such component is the conditional access

system (CAS) and digital rights management (DRM)

components. This paper will present one solution to simulate

conditional access (CA) in software without vendor CA libraries

and support in hardware. The aim is to get the ability to test and

verify various parts of DTV software that depend on CA

functionalities.

Index Terms— digital television, simulation, conditional

access, DTV stack test environment.

I. INTRODUCTION

A device that can reproduce digital television needs to

comply with some DTV standards (DVB, ATSC, ISDB, etc.).

Often it needs to support some content protection mechanism

(encryption, signing, etc.). Additionally, the device needs to

have a certain number of standard features and a few unique

features dictated by the operator that will be available to the

user.

In developing DTV software, specific components are

delivered from third parties, like a software development kit

(SDK) for the target platform or CA libraries for content

protection. Content protection certification is an essential step

in the development life-cycle, and DTV software is adopted

according to the specification documents and APIs delivered.

Upon development completion, the application is verified

using several test suites that prove it behaves in the required

way. This process repeats for every new target platform.

The DTV software development is tightly coupled with the

target platform. Depending on the platform and its supporting

packages, it may be impractical to develop a more complex

project using them as a development platform. Instead, one

way to overcome those difficulties is to develop on more

Milan Petrović – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Milan.Petrovic@rt-tk.com)
Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

Uroš Jokić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Uros.Jokic@rt-tk.com.

suitable platforms. That platform should support at least

logging mechanisms, the ability to re-write persistent

memory, access to hardware debuggers, and good enough

software packages to use those features. In practice, this is not

the case, and almost always, given components are missing,

and software packages are always behind the state-of-the-art

counterpart packages available for PC. Selecting a more

applicable platform instead of the target one for development

is not applicable if the target CA library has different

requirements (hardware or software) compared to its

counterpart on a development platform.

For DTV software to be as robust as possible, there was a

need to implement support for different CAS vendors. They

shared core concepts for content access rights, content

protection, operator box management, operator messaging to

users, and other customized product and feature protections.

The CAS vendors’ APIs significantly differ, although

concepts are very similar. The differences between versions

from the same vendor may not be compatible. Older libraries

tend to have fewer restrictions, while newer versions have

more demands and APIs to support, as new scrambling

algorithms are added, and more security protocols are

employed. It is necessary to have a level of abstraction in

DTV middleware to adopt those changes and differences.

As a result, the first DTV simulator was developed on a PC

platform [1]. It aimed to support the development of a

graphical user interface. It became clear it could be used for

implementing DTV middleware features as well. Those

features were related to the DTV standard. To support it, the

middleware test environment (MTE) [2] was created to test

and verify different parts of the software on a PC platform

using white box testing [3] [4]. This approach could not cover

the code developed for a CA subsystem and the application

code that was connected and dependent on that CA

subsystem.

This paper aims to discuss paths that could be taken to

overcome those obstacles. It gives one solution that is

implemented and tested to prove the concepts. We could not

find any relevant work on this topic. Closes to the work are

discussions on testing approaches made in [5], [6], and [7].

Section two details the challenge and introduces the DTV

system’s architecture. Section three provides more

information on the implementation and final solution. Section

four explains verification and test results. Section five

concludes the work.

One solution for simulating conditional access

in DTV Software on PC platform

Milan Petrović, Đorđe Glišić, Uroš Jokić and Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 1 of 4 ISBN 978-86-7466-930-3

II. PROBLEM STATEMENT

The CA vendor dictates two primary CA integration

approaches depending on the target platform and selected

operating system. If the target platform runs an operating

system (OS) that does not support processes, only threads

(tasks), the architecture looks as in Fig. 1. Here DTV software

consists of OS, software development kit (SDK, drivers),

hardware abstraction layer (HAL), middleware, and

application layer. The application depends on middleware,

and middleware depends on the abstraction layer (HAL) API

that abstracts OS and SDK APIs [8].

The middleware and application layers contain all the

business logic, whereas the remaining layers, like HAL, are

porting layers designed to be very thin. Application is oriented

toward user interface and feature logic, whereas middleware is

oriented toward controlling hardware, supporting DTV

standards, and interacting with CA subsystems.

 Fig. 1. Typical architecture of DTV software in case of OS where processes

are not supported.

The module depicted as CA Wrapper is the actual module

seen by the DTV middleware. It interacts with the middleware

and application-level modules. It behaves like a proxy

between the DTV stack and the existing vendor-specific CA

subsystem. The conditional access subsystem consists of the

kernel part where the logic is implemented and the hardware

abstraction part (CA HAL) used as a glue layer between the

CA kernel and underlying OS and SDK APIs. In this

architecture, middleware HAL acts like a resource manager

and has the information about allocated resources and tasks

running in the system. This allows better resource

management compared to the second approach.

The second approach is required with the OS supporting

processes, like Linux and Android. As depicted in Fig. 2, the

CA kernel and CA HAL depend directly on the underlying OS

and SDK. They are running in a separate process. If the DTV

stack is unstable or crashes, it does not affect the CA kernel.

This approach ensures that the rest of the system never

compromises CA. Still, the CA wrapper serves as a proxy

between the CA kernel and DTV stack. It is up to the SDK

vendor to ensure that multiple clients can access the same

hardware peripherals. If not provided, some features like PVR

may need to be carefully designed to ensure that components

do not overlap in responsibilities.

Fig. 2. Typical DTV software architecture in platforms with OS supporting

processes.

We need to add CA subsystem support on a PC platform to

test CA-related features. There are two possible paths:

1. Implement CA wrapper replacement module

2. Implement CA kernel replacement module (supporting

CAS API)

The first solution gives us the ability to have a general CAS

subsystem, irrespective of the actual CAS vendor. However, it

puts aside CA wrapper code that interacts with the existing

CA subsystem. Changes in the requirements of the CAS do

not directly affect this solution.

The second approach is to develop the CA kernel module

and the CA HAL module. It will preserve the CA wrapper

module and allow it to be appropriately tested. However, this

approach is considerably more time-consuming and has open

questions related to all behaviors implemented in CA kernel

API.

Our aim is not to implement content protection as software

or hardware encryption. That is transparent to the middleware.

Middleware only knows that content is protected and that the

CA subsystem must start. CA subsystem is entirely

responsible for the content decryption.

Encrypted content is never used in testing on PC because it

has a complicated decryption procedure requiring specialized

hardware protected by patents and legal documents. Only

unencrypted content is used. This type of content can be

generated using open-source tools like TS-duck [11] and

video content available.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 2 of 4 ISBN 978-86-7466-930-3

III. IMPLEMENTATION

We have decided to take a hybrid approach given the above

pros and cons. We implemented CA wrapper API on the DTV

stack side as it already exists, allowing the remaining parts of

the system to be unaware of the difference. CA kernel is

partially shifted to the Middleware Test Environment (MTE).

It is a framework for testing the DTV stack on PC.

The DTV software is running as a standalone executable. It

has a middleware hardware abstraction layer (HAL) adjusted

for the PC platform. Hardware devices are simulated in HAL

using SDL [9] and FFmpeg [10] open-source libraries. The

test environment is written in Python and communicates with

the PC simulator using interprocess communication,

particularly sockets. The test environment supported remote

control, logging, and execution of automated tests. It can

fully control the PC simulator, user input, and DTV stream

input. Automated tests are supported by different APIs that

are implemented in MTE. More about it can be found in [1]

and [2] papers.

Fig. 3. DTV software architecture with middleware test environment (MTE)

supporting conditional access head-end (CA HE)

As given in Fig. 3. the middleware test environment

communicates with the PC simulator through the HAL layer

that implements interprocess communication. A module CA

wrapper uses send/receive routines from HAL. This is to

mimic actual data flow, where CA information comes from a

demultiplexer connected to the data stream. It will parse

received commands and act accordingly. One typical example

is the zapping procedure, where service is changed from one

to another. In that case, middleware notifies the CA wrapper

who needs to check access rights for that service in the

database, sharing the data about the service being connected

to and additional information about tracks to be descrambled.

The module checks access rights in the database and responds

to middleware. In our work, descrambling is not implemented,

as it does not add any test value since all the descrambling is

done in hardware, and none of that logic is done in the DTV

stack.

Module CA wrapper is responsible for maintaining the CA

kernel database. It exchanges data with the remaining parts of

the DTV system. The middleware test environment can get

the CA kernel database and modify it by sending appropriate

commands. It communicates with a PC simulator using

conditional access head-end (CA HE).

Following features (commands) we implemented in the CA

HE subsystem and CA wrapper:

1. Device activation in a network

a. Smart card

b. Virtual smart card

2. Product access rights

a. Checking rights

b. Adding rights

c. Removing rights

3. Service access rights

a. Checking rights

b. Adding rights

c. Removing rights

4. Content protection

a. Covered fingerprint

b. Periodic fingerprint

c. Permanent fingerprint

5. Mails

6. Changing service bouquet

7. Forced software update

8. CA notification messages

a. Periodic messages

b. Permanent messages

c. User acknowledges messages

In Fig. 4, a window containing the setup for generating CA

messages is presented. This CA HE submodule of MTE

supports creating test cases. The test case is a message with all

the parameters for that particular command. This way, the QA

tester or developer does not have to enter test commands each

time manually. Instead, he can select test cases saved as an

XML file.

Fig. 4. CA HE main window consists of three parts, the user can re-use
existing test cases or make new CA commands and send them in bulk.

CA HE main window consists of three parts, the left part

reserved for displaying a tree of saved test cases, the middle

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 3 of 4 ISBN 978-86-7466-930-3

part consists of a panel for generating CA commands, and the

right part for listing generated commands ready for sending.
The middle panel for adjusting access rights for particular

services is depicted in Fig. 5. There can be a list of services

available on the box and the access right for that service.

Fig. 5. The middle panel of the CA HE main window, where users select

options to modify the service database's access rights.

The service access rights database is saved on the simulator

side at runtime. The database can be exchanged between the

simulator and MTE upon request sent from MTE. Once they

are synced, MTE can send commands related to services

access rights to the simulator. When the CA wrapper module

receives a command, it processes the message, updates the

database and saves it in an XML document. The CA state

simulated in the CA wrapper can be restored from the XML

file upon simulator restart. With this approach, the simulator

is a standalone application, and MTE can communicate with

it, but there is no dependency on MTE.

IV. VERIFICATION AND RESULTS

To test prepared CA subsystems, we have created a set

suite that covers all supported types of messages that could be

sent to the CA or received from the CA module by the DTV

middleware [4]. We have observed that the code is executing

correctly and that middleware behaves in the same manner as

it is expected in the production environment.

In the case of sending chains of commands, we have

observed new failure cases that were not covered by the DTV

middleware and application. Those cases involve low

probability cases like at the same time receiving a fingerprint

message and a CA message. Those cases uncovered several

combinations that could not be adequately tested on the

development side, the operator's production live network or

the lab network. They are not simple to prepare as a test case

in those environments.

Scenarios that combine user interaction, CA signaling, and

DTV signaling can reveal hidden bugs. Those bugs could be

reported as software malfunction in a production. Yet those

issues are impossible to reproduce manually unless the exact

preconditions are known, which is rarely the case. Troubled

combinations may be of low probability, but in networks with

many end users, the chances that the failure will be seen and

reported are very high. Still, the ability to troubleshoot it

efficiently is very poor.

V. CONCLUSION

This paper focused on expanding capabilities for testing

DTV software on a PC platform. It allowed more complex test

cases to be executed that would be very hard or impossible to

replicate in a network with real hardware. A further way of

improving the solution is making a CA API on the MTE side.

That could allow the creation of automated tests for testing

application behavior as a response to CA events and user

interaction.

Work could be extended toward implementing specific CA

vendors’ API allowing the whole DTV stack to be tested for

required functionalities. It will increase the coverage of

testable code to almost 100%. But gains versus cost ratio for

doing this may not prove as an appropriate step. Another

improvement can be made towards implementing some

descrambling capabilities.

REFERENCES

[1] A. Šuka, Đ. Glišić, M. Jovanović, “One solution of DTV simulator for

PC platform“, TELFOR, 2019

[2] M. Petrović, Đ. Glišić, M. Jovanović, “One solution for testing
embedded DTV software on the PC platform”, ETRAN 2022,

[3] S. Nidhra1, J. Dondeti, “BLACK BOX AND WHITE BOX TESTING

TECHNIQUES – A LITERATURE REVIEW”, IJESA, Vol.2, No.2,
June 2012

[4] I. Jovanovic, “Software Testing Methods and Techniques”, IPSI TIR,

2009
[5] T. Tarkan, “User-driven Automatic Test-case Generation for DTV/STB

Reliable Functional Verification”; IEEE Transaction on Consumer
Electronics, vol.58, no.2, pp. 587-595, ISBN: ISSN:0098-3063, 2012

[6] Cabot Communications, “Automated testing of digital television

devices“, accessed 2022, http://www.cabot.co.uk/solutions/robotester-
white-paper/at_download/CB.pdf

[7] M. Kovacevic, B. Kovacevic, D. Stefanovic, V. Pekovic “System for

automatic testing of Android based digital TV receivers “, INDEL 2014,
Banja Luka

[8] G. Miljkovic, “DTV Linux Device Abstraction for Embedded Systems”,

ISCE, ISBN:978-1-4244-6673-3, 2010
[9] Simple DirectMedia Layer, https://www.libsdl.org/, accessed May 2022

[10] FFMPEG library, https://ffmpeg.org/, accessed May 2022

[11] TSduck, https://tsduck.io/, accessed May 2022

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 4 of 4 ISBN 978-86-7466-930-3

