

Abstract—In an embedded device industry, applicable

software is developed for a particular platform and device.

Reusability, functional correctness, and quality control of the

software are of great importance. The digital television industry

is no different. Moreover, it requires compliance with device

safety, security, and functionality standards. Compliance testing

is often done with near-end products, as most functionalities

require that all components be put together. Secondly, most

development is done using target platforms that often lack tools

and add significant delays in development. This paper gives one

solution for testing the embedded DTV software on PC. The

authors give a road map for developing testing environment to

safeguard the product's quality. It allows early-stage testing by

the development team and helping the QA team test the end

product.

Index Terms— automated testing, DTV, middleware test

environment, python, OpenCV, tesseract.

I. INTRODUCTION

In embedded devices, hardware capabilities vary in many

areas. Available RAM, platform instruction set, supported

peripherals, hardware accelerators, and dedicated specialized

hardware blocks. On the other side, depending on the product

or manufacturer, there are support variations, incomplete

documentation, and very little support for the supporting

development software packages.

On the other side, there is a problem with integrating third-

party components. They may or may not come with the test

suite or test application. In the case of open-source software,

source code is available, but it was written for specific

operating systems (OS), sometimes depending on unique OS

features.

A common component for all devices is DTV middleware

software. It grows with new requirements, new standards, etc.

Testing is always pushed to the end product, verified against

predefined sets of tests. The reason behind it is that many

features depend on all components being put together, and it

is tough to test partially completed software [1].

Additionally, suppose such a DTV stack is inherited from

another source without a test suite. In that case, it is always

Branka Ševa – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Branka.Seva@rt-tk.com)
Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

Uroš Jokić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Uros.Jokic@rt-tk.com.

commercially unjustifiable to spend engineering time

preparing a test suite that will verify the DTV stack. Instead, it

is pushed to develop the end product and confirm its

functional compliance [2].

Commercially available solutions are focused on testing the

end product. Depending on the solution, it may offer hardware

compliance testing or functional testing. Some tools like

Intent+ [3][4] offer automated and manual testing. Automated

testing is accomplished using dedicated test suite applications.

Suitest [5] offers visual preparation of tests. Other solutions

provide general-purpose languages like Stb-tester [6]. Others

provide APIs like black-box-testing (BBT) API from Intent+.

They mainly focus on automating the remote controller,

capturing the screen, recording audio, and processing it using

a test suite.

As a result of described practices, software products’

quality may be at a reasonable level, but the quality of the

code may be poor. Reuse of already developed code is very

inconvenient across projects. Feature development may slow

down as maintaining code becomes more and more expensive.

Products may suffer from bugs that have low repeatability

rates and high severity. In such cases, black-box testing [7] is

not suitable. It is necessary to implement white box testing [8]

procedures.

Section two details a problem and describes the system’s

architecture. Section three explains the proposed solution and

provides implementation details. Section four discusses the

results. In section five, we conclude our work.

II. PROBLEM STATEMENT

In the development stage, verifying a new feature is time-

consuming. Platforms with limited hardware capabilities offer

unique tools to write software to devices. It may need from 30

seconds up to 5 minutes to run the software. Often those

platforms do not support hardware debuggers.

A typical application in DTV consists of the following

components:

1. Application layer (APP)

2. Middleware layer (MW)

3. Hardware abstraction layer (HAL)

4. Platform-specific SDK (SDK)

5. Operating system (OS)

Platform-specific SDK is a set of libraries and APIs that

provide access to platform hardware components and allows

control over them. This layer and the OS layer are closed for

the development team. Also, those layers are highly platform-

specific, so they cannot be ported to other platforms without

One solution for testing embedded DTV

software on the PC platform

Branka Ševa, Đorđe Glišić, Uroš Jokić and Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 1 of 4 ISBN 978-86-7466-930-3

considerable effort.

The hardware abstraction layer (HAL) provides a defined

API [9] that exposes all necessary functions for upper layers

(middleware and application) and abstracts platform devices

and operating systems. It is implemented again with every

new platform. It is common to have abstraction layers for

every portable software and a test suite that verifies that the

layer is ported correctly.

The middleware layer provides support for the DTV

standard and is responsible for all functionalities in the DTV

application. It consists of modules controlling hardware

service change, acquiring information from DTV signal

tables, maintaining program database, service lists, event

information database, user interface engine, etc. Those

modules are often interdependent. It is not simple to decouple

one from the rest of the system and check their correctness

using white box testing (e.g., unitary testing).

An essential component of the middleware layer is the

conditional access system (CAS) or digital right management

(DRM) system. It provides access to protected content. It is

also a closed component that comes with the pre-defined test

suite.

The application layer covers the graphical user interface

and specific logic for the user interface. It is connected to the

middleware layer and highly depends on it. Black-box testing

mainly verifies this layer.

 Architecturally higher-level components depend only on

lower layer components. Key components that are developed

are the application layer and middleware layer. Hardware

abstraction layer API stays the same across different target

platforms. We want to create a system that will test those two

main components.

The goal is to prepare a software test environment that can

support:

1. Functional tests as end-user

2. Scenario tests as end-user and operator

3. Monitoring and testing internal state

4. Code coverage

 Functional tests cover black-box testing, where

implemented features are verified [1]. Examples are video

presence, audio presence, switching service, changing

volume, displaying graphics, and event information presented.

Besides core DTV tests, additional tests unique to the

application have to be supported, like the position of some

element on the screen, at the right time, for the correct period,

etc.

Scenario tests verify DTV software in more complex cases.

Those use-cases involve changing information in DTV tables

signaling, new commands from the CAS/DRM system, or

new data from other custom protocols that affect the device’s

state. Tests shell cover application responsiveness to the user

interaction and user interface changes based on the system's

internal state.

The monitoring system needs to monitor the execution and

report critical situations. It should consist of a logging

mechanism and software/hardware debuggers to automate the

testing of internal states by inspecting calls to specific

modules, APIs, and execution paths.

Code coverage gives insight into the test suite coverage of

the existing code. If test coverage is low, it may mean that the

test suite has to be expanded to cover some exceptional cases

or that some source code is unnecessary occupying space

(dead code). This work did not cover code coverage testing.

Due to the complexity of this feature, implementation details

are not covered in this paper.

The test environment defined would be capable of

inspecting every module for its dependencies and behavior.

Afterward, proper refactoring will allow white box testing

(unitary testing, scenario testing).

III. IMPLEMENTATION

We decided to create a test environment to run and test

DTV software on a PC. The reason behind it is to use current

and future state-of-the-art tools. The first step was to port

DTV software to the PC platform. It was done by porting the

HAL layer. More details about it can be found in [10]. It

supports working with actual transport stream data and makes

DTV middleware fully operational. Compared to the

commercial product, the only difference is that it does not

support targeted CAS, as it is proprietary, and its libraries are

only delivered for specific target platforms. Work is done to

overcome this, using simulated CAS. Due to the complexity

of this feature, implementation details are the subject of

another paper and are not given here.

Fig. 1. Key components of DTV software running as part of the PC simulator
are on the left side. On the right side are components of the MTE.

We decided to run separate processes for the test

environment and DTV simulator. The DTV application runs

stand-alone as it would be on the actual device. It allows us to

have more options for the middleware test environment

(MTE).

Communication with the PC simulator is done using

TCP/IP. The communication protocol is designed to be

minimalistic. The aim was not to disrupt the dynamics of the

DTV middleware execution compared to its expected

dynamics on the device. The protocol covers commands from

MTE to PC simulator and data from PC simulator to MTE.

Commands consisted of remote controller (RCU) events and

requests for device state (screen capture, audio status, and

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 2 of 4 ISBN 978-86-7466-930-3

similar).

We have decided to implement a test environment in

Python language. We saw that this language is widely used in

automation testing. Two STB automation test suites [4][5]

already support Python scripting. It has extensive library

support for user interface, computer vision, text recognition,

communication protocols, etc. It is cross-platform, so we

could design a tool to run on different platforms. It supports

documenting code and a capable development environment

(IDE).

We have selected the following frameworks to implement

MTE:

1. wxWidgets - UI library (platform-independent,

supports all major operating systems)

2. openCV - cross-platform library for computer

vision, used for image manipulation and

comparison

3. Tesseract - OCR engine for text recognition and

extraction

The application was developed to support four different

APIs:

1. Remote control API

2. Logger API

3. Black-box testing API

4. Development API

Remote control API covers control over RCU and sends

commands to the PC simulator the same way a user would do

using a remote control unit (RCU). To send commands, a

TCP/IP protocol is used. On the side of the simulator, an

existing module for receiving RCU input is adapted to receive

TCP/IP commands from MTE.

Logger API is responsible for collecting log information

from remote PC simulators using TCP/IP protocol. The

existing logging module was improved to send log

information over TCP/IP and the serial console on the

simulator side. It supports filtering and searching for logging

information.

Black-box testing API is a set of predefined APIs

implemented on top of RCU API and an additional acquiring

protocol for collecting screen output. It is aimed to be used for

writing test cases. We selected to support the commercial

black-box testing (BBT) API as part of Intent+. It was

available to compare with the framework against an existing

set of automated tests. Other solutions like Stb-tester API [5]

are similar in API and exposed functionality.

Development API is created to support debugger

integration in the MTE framework. It is implemented to

support GNU GDB compatible debuggers. The framework

can run the debugger and start the application or run the

debugger and connect to the remote debugger server running

the application (Fig. 2). This API makes it possible to start

debugging software and send commands like setting

breakpoints and watchpoints, printing values, etc. In this

scenario, MTE spawns two processes, one for the GDB server

that starts the PC Simulator and the second one for GDB used

to control the remote PC simulator.

Fig. 2. Possible setups for running PC simulator using GDB debugging

software with MTE.

Application consists of four parts similar to the APIs given

above:

1. RCU controller

2. Stream controller

3. Logger

4. Test suite controller

Using an RCU controller, the user or developer can control

the PC simulator using commands in the window that

resemble the real RCU, as shown in Fig. 3.

Fig. 3. Key components of DTV software running as part of the PC simulator
are on the right side. On the left side are elements of the MTE.

The stream controller window is responsible for adjusting

input DTV streams for the PC simulator. It allows setting

stream files and broadcasting parameters.

Logger windows give information about logging data and

allow users to filter and search for specific data in the log. The

search pattern is highlighted in the log. In the filter window,

only lines matching patterns are presented (Fig. 4).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 3 of 4 ISBN 978-86-7466-930-3

Fig. 4. Search and filter windows for logged information.

IV. VERIFICATION AND RESULTS

As a result of the following implementation, a test suite was

created for commercial products using only BBT API (black-

box testing). Test suites are grouped by the features they are

testing. A list of all test groups and the number of tests are

given in Table 1.

TABLE I

LIST OF TEST SUITES PREPARED AND RESULTS

Info channel 5 test cases PASSED
EPG 6 test cases PASSED
Genres 2 test cases PASSED
Menus 10 test cases PASSED
PVR 8 test cases PASSED
Reminders 3 test cases PASSED
Favorite lists 6 test cases PASSED
Service lists 5 test cases PASSED
Volume 6 test cases PASSED
Service lists 5 test cases PASSED
Zapping 5 test cases PASSED

In the case of automated black-box testing, some graphical

test cases may be challenging to create and prove reliable.

User interface graphics blended with background video make

it more difficult for AI-based engines to recognize certain

visual elements' fonts, text, and shapes. Also, the comparison

rate with expected images (shapes) may drop due to the

background video. Our solution can compare video and

graphical layers separately, resulting in higher recognition

rates than blended image recognition using tools like OpenCV

and tesseract. As a result, our MTE showed fewer errors than

hardware running as part of the Intent+ solution.

 Verification time was about 15 minutes, compared to

manual testing, which will take 1-2h depending on tester

skills. This allows developers to save considerable time when

developing new features. Compared to automated hardware

testing, execution time is around the same. It will enable

continuous integration (CI) systems like Jenkins to repeat

testing on selected changes.

V. CONCLUSION

With the proposed solution DTV application could be

tested in the development phase by research and development

teams or by dedicated QA teams. Automated tests written for

MTE are usable for BBT devices in hardware testing, as they

are written using the same API.

The essential contribution of this work is automated testing

using software debuggers, where developers can inspect

certain parts of the system multiple times and summarize

information in reports. This type of testing can mimic unitary

testing and complex scenario testing having internal systems

state exposed for examination and reporting. It allows tightly

coupled modules to be slowly refactored and isolated to

introduce unitary testing and low-level verification.

Additionally, any other DTV software capable of porting to

the PC platform could be tested using this MTE framework. It

has to implement necessary features for that middleware and

additional requirements to support communication protocol

with MTE.

Further work could be done toward implementing support

for CAS/DRM simulator or emulation. Also, it would be of

great benefit to change DTV signaling from within the MTE

application, as now it relies on signaling transported in DTV

streams captured from live DTV networks. Another path for

improvements is to add systems for code coverage and

memory leak checks like Valgrind that could check

applications in specific test scenarios as part of the automatic

test.

REFERENCES

[1] T. Tarkan, “User-driven Automatic Test-case Generation for DTV/STB
Reliable Functional Verification”; IEEE Transaction on Consumer

Electronics, vol.58, no.2, pp. 587-595, ISBN: ISSN:0098-3063, 2012

[2] Cabot Communications, “Automated testing of digital television
devices“, accessed 2022, http://www.cabot.co.uk/solutions/robotester-

white-paper/at_download/CB.pdf

[3] M. Kovacevic, B. Kovacevic, D. Stefanovic, V. Pekovic “System for
automatic testing of Android based digital TV receivers “, INDEL 2014,

Banja Luka
[4] Intent+, https://www.rt-rk.com/services/testing-centre, accessed May

2022

[5] STB Tester, https://stb-tester.com/, accessed May 2022
[6] Test suite, https://suite.st/, accessed May 2022

[7] S. Nidhra1, J. Dondeti, “BLACK BOX AND WHITE BOX TESTING

TECHNIQUES – A LITERATURE REVIEW”, IJESA, Vol.2, No.2,
June 2012

[8] I. Jovanovic, “Software Testing Methods and Techniques”, IPSI TIR,

2009
[9] G. Miljkovic, “DTV Linux Device Abstraction for Embedded Systems”,

ISCE, ISBN:978-1-4244-6673-3, 2010

[10] A. Šuka, Đ. Glišić, M. Jovanović, “One solution of DTV simulator for
PC platform“, TELFOR, 2019

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 4 of 4 ISBN 978-86-7466-930-3

