

Abstract—As the complexity of automotive systems has grown,

it has become necessary to cluster various vehicle components

into several domains, based on a specific function they perform.

This approach has facilitated the development of domain-specific

features, as it allows to create communication standards and

common libraries that meet the requirements of the particular

domain. On the other hand, it has created the redundancy in the

resource consumption required to perform similar tasks in

different domains, which leaves the room for further

optimizations. This is most notable if we analyze the

functionalities of the two fastest growing domains: autonomous

driving assistance (ADAS) and in-vehicle infotainment (IVI),

which are both developing simultaneously, and may benefit from

the option of providing features and services to each other. This

paper will examine and propose a solution for interconnection

between ADAS and IVI domains by utilizing state-of-the-art

mechanisms of the service-oriented architecture (SOA)

paradigm. The examination of SOA utilization rationale will be

presented, as well as the crucial challenges and limitations of the

possible approaches, derived mainly from the discrepancy of

service-oriented architecture implementation and mapping in

different standards. Various features and use-cases will be

discussed, that would be good candidates for cross-domain

implementation.

Index Terms— in-vehicle domains, ADAS, IVI,

interconnection, SOA in automotive.

I. INTRODUCTION

The transition to centralized domains in the automotive

system design and development was necessary due to the

increasing number of Electronic Control Units (ECUs) in the

modern vehicle. With this approach, the system is organized

into several domains based on the features and the tasks ECUs

within the domain perform. By splitting the whole system into

a set of specialized domains, it was possible to create

standards and abstractions that facilitate the development of

features specific to the particular domain, without the need for

developers to constantly solve the problems of connectivity

and resource sharing. Two domains which are constantly

improved and require powerful resources are ADAS -

Advanced Driver System Assistant domain and IVI - In-

vehicle Infotainment domain. The ADAS domain is

responsible for safety-critical features and algorithms using

Dušan Kenjić is currently working toward the Ph.D. degree with the

University of Novi Sad, Serbia, (e-mail: dusan.kenjic@uns.ac.rs).
Marija Antić is currently the Assistant Professor with the University of

Novi Sad, Serbia, (e-mail: marija.antic@rt-rk.uns.ac).

Dušan Živkoc is with the RT-RK Institute for Computer based Systems,
(e-mail: dusan.zivkov@rrt-rk.com).

various types of sensors in order to enable safe, comfortable

and cost-effective driving. On the other hand, the IVI domain

is oriented towards passenger entertainment, as well as

towards providing useful information about the driving

conditions and the state of the vehicle. Although these two

domains perform different tasks, there is a set of features and

sensors of the same type which are commonly used in both of

them. However, in the current architecture of modern vehicle,

these two domains do not share any of the hardware resources

nor results of the data processing algorithms. This creates an

implementation overhead, as similar functionalities need to be

implemented in both of the domains, and the hardware cost is

constantly increasing. This represents the main motivation to

design an approach for resource sharing between domains as a

first step towards the unified platform which shall control the

entire system.

In this paper, we will present the results of the initial phase

of a research project aiming to create the solution for the inter-

domain communication and resource sharing in the

automotive solutions. First, we will present the summary of

the state-of-the-art research and commercially used

approaches for the inter-process communication and service-

oriented architecture in automotive industry. Then, we will

propose the architecture of the solution connecting ADAS and

IVI domains, provide some practical details and discuss the

examples of the use-cases which would benefit from the

resource sharing between these two domains. Finally, we will

discuss the implementation challenges of the proposed

approach.

II. IPC AND SOA IN AUTOMOTIVE SYSTEMS

A. Service-Oriented Middleware in Automotive

Traditionally, automotive systems use a conventional

signal-based communication approach, which provides a

deterministic data transfer, and enables the processes to run in

the predefined schedule [1][2]. However, such an approach

does not support the desired scalability of the system, which is

required to satisfy the requirements of emerging applications

and scenarios. Therefore, in order to provide the flexibility

and a more dynamic and scalable system, service-oriented

architecture (SOA) was introduced to the automotive system

design. Service-oriented communication approach has been

adopted from the domains of web applications, cloud and

information systems, where it has already proven its

flexibility for functional services implementation [3]. SOA

represents an efficient way to encapsulate the job done by the

specific component into a service. This way, resources can be

Service-Oriented Communication Between

ADAS and IVI Domains in Automotive

Solutions

Dušan Kenjić and Marija Antić, Members, IEEE, Dušan Živkov

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 1 of 7 ISBN 978-86-7466-930-3

distributed to the clients interested in the information which

the service provides, the service implementation can remain

obscured from the clients and modularity and repetitiveness

can be achieved. Additionally, the unified communication

mechanism facilitates the interoperability between

heterogenous system components, which otherwise represents

a time consuming and challenging problem that needs to be

solved during the application development.

The first step towards the integration of SOA principles

within an automotive system is to create a platform and define

a protocol which can support this integration. Such platform

must be compatible with other automotive solutions and

protocol must be suitable with the automotive requirements

[4]. Scalable service-Oriented Middleware over IP

(SOME/IP) is a Remote Procedure Call (RPC) mechanism [5]

specialized for the usage in the automotive systems. It

consists of three modules: SOME/IP, SOME/IP Service

Discovery (SD) and SOME/IP Transformer. SOME/IP

fundamental module is managing the serialization and

deserialization of transmitting data, SD module enables the

connection establishment and service discovery procedure and

the Transformer module specifies automotive/embedded data

serialization [4].

There are multiple protocols which can be used for in-

vehicle cross-domain communication such as DDS, HTTP,

MQTT, web sockets, etc. Besides the abovementioned fact

that the SOME/IP is created for the automotive industry there

are several functional benefits that made it our choice for such

use-case. First, the mandatory configuration of the

communication over SOME/IP enables somewhat more

deterministic behavior in contrary to another protocols and

mechanisms used to implement SOA in the web and cloud

computing such as the HTTP for example. Additional benefit

is that SOME/IP provides multiple types of communication.

Comparing to the HTTP, which allows only request-response

communication initiated from clients, SOME/IP provides both

request-response and publish-subscribe approaches.

Furthermore, SOME/IP does not require communication

establishment for each data exchange, but only for initial

client-service connection and it can rely on both, TCP and

UDP protocols in contrary to the communication

implementing Representational State Transfer (REST)

principles.

Although having different architectures, diverse software

platforms use the SOME/IP communication stack based on

the similar concept as depicted in Fig. 1.

Fig. 1. Concept of SOME/IP implementation in automotive platforms

Usually, the middleware which provides the applications

with the particular interfaces based on the determined

configuration parameters is implemented by the standard.

Depending on whether it is event, method or field that is

defined by the configuration the data exchange would be

performed by publishing the information to subscribed client

when a logic on the service side determines so, client

requesting the execution of a method on service side and

getting the response if needed and getting, setting or notifying

about the changed state of a field, i.e. attribute on the service

side respectively.

Services in automotive SOA need to meet strict

requirements regarding the service discovery and startup

latency time [6]. Authors in [3] even propose dividing and

isolating secured and exposed subnetworks in order to

accomplish more reliability, since the service discovery

mechanisms cannot guarantee that the service will be

provided at the needed time. However, this aspect will not be

examined in this paper, but another one instead – how SOA is

implemented within available architectures and how it can be

used for inter-communication between ADAS and IVI

domains.

B. IPC Standards in IVI Domain

Modern vehicles are currently competing to meet the

requirements driven by the consumer technology, especially in

the infotainment domain. Inside the vehicle, the passengers

expect the experience they have when using everyday portable

devices, such as tablets and mobile phones. They are used to

being able to install and use various types of applications

developed by different vendors. In order to meet these

requests, it is necessary to utilize the globally accepted

standards for building scalable and portable platforms.

1) GENIVI approach

The former GENIVI (currently COVESA) alliance drives

the development of open standards and technologies used in

automotive systems. Their goal is to address the challenges

which the in-vehicle infotainment components are facing when

reaching to the outside world (cloud services, other vehicles,

etc.) and communicating with other in-vehicle infotainment

components as well. They offer the CommonAPI [8] – an

inter-process communication middleware based on the

FRANCA framework, which provides service-oriented

mechanisms. It is designed to split the applications

implementation apart from the communication mechanisms

used between the implemented application components.

Since the only purpose of this middleware is to provide

interfaces between lower (platform services and protocols) and

upper (applications) layers, its implementation is generated

mainly from the FRANCA Interface Definition Language

(FIDL) to make its utilization easier. Applying the specified

interface definition language – FIDL, it enables flexible

deployment models. This way, the dynamic behavior of an API

is specified by defining client/server interaction interfaces,

states and transitions between them [7]. The communication

itself is performed by using the generated Stub and Proxy

classes relying on the CommonAPI middleware within the

Service and Client applications respectively. This way, the

concept from Fig. 1 is kept since the entire CommonAPI stack

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 2 of 7 ISBN 978-86-7466-930-3

including the Stub and Proxy provides applications with

interfaces for usage of the SOME/IP mechanisms.

Additionally, COVESA semantically differentiates

between the two realms: Common-API Core, which does not

depend on the communication protocol itself, and

CommonAPI Binding which is protocol-specific [8].

Currently, the CommonAPI support two RPCs, D-Bus and the

SOME/IP. In order to set deployment parameters for chosen

protocol, the FRANCA Deployment (FDEPL) files are used

along with the FIDL.

2) Android approach

Android is an open-source operating system mainly utilized

for mobile devices. It enables deployment on wide range of

hardware platforms and supports third-party applications

development [9]. Currently, the automotive industry is facing a

similar requirement for the possibility for third-party

application development and utilization, therefore the

automotive community is more interested in the Android

platform [10].

Android platform has the mechanisms for feasible handling

of the Inter-Process Communication (IPC) via its proprietary

interface definition language called AIDL. It provides a

programming interface utilized by both the client and the

service using the IPC to communicate with each other [11].

Although AIDL has similar functionality as other IDLs, its

utilization does not rely on the same paradigm as it is the case

with the FIDL and COVESA’s Common-API service-client

communication model. Additionally, the SOME/IP had not

been supported in Android until vsomeip version 3 was

released. The possible correlation between CommonAPI and

Android and more details about the AIDL paradigm and its

communication mapping to other mechanisms will be

addressed in the Section 4.

C. IPC standards in ADAS domain

The previously described standards are used for the

implementation of the application for the in-vehicle

infotainment part of the automotive system. On the other hand,

ADAS domain is faced with the challenges driven by different

requirements, as it considers safety-critical algorithms and

modules. Nevertheless, ADAS domain implies the integration

of functionalities provided by machine vision and sensor

fusion. Lots of these algorithms are used in consumer

technologies, i.e., in the IVI domain also. Therefore, the

benefit of exchanging resources between two mentioned

domains is obvious, since there is a set of functionalities they

share. A standard that has become a convention for the

implementation of ADAS domain functionalities is

AUTOSAR.

The AUTOSAR standard considers both safety host and

performance host implementations. Safety hosts are referring

to ECU’s cores with safety and security control features

specialized for the automotive industry. Classic AUTOSAR

platform is designed for the fully deterministic, deeply

embedded standardization of safety hosts. Furthermore, the

Adaptive AUTOSAR platform is offering more flexibility by

addressing operability and communication mechanisms more

suitable for high-performance computing devices called

performance hosts. Since the performance host resources and

algorithms complexity are more similar to the ones in the IVI

domain, we will focus on the sharing resources and features of

the Adaptive AUTOSAR platform.

User applications are running on the top level, right on top

the AUTOSAR Runtime Environment for Adaptive

Applications (ARA). The main component of ARA is

ara::com, a middleware controlling the communication within

a system. It provides the interfaces to the user applications

which allow data exchange with both local and remote

applications and ARA services [12].

Equivalent to the FIDL, ara::com interfaces in ARA-API

are defined by the ARXML. Interfaces are provided to

applications with the exact same purpose as it is the case with

CommonAPI, to decouple the applications development from

the communication mechanism. It is done by utilizing two

artifacts - Skeleton and Proxy which implement the SOA

paradigm, i.e., the service-client communication, likewise it is

the case with the Stub and Proxy in CommonAPI. Skeleton

represents the generated instance which provides service calls

functionalities. On the other hand, Proxy is a generated

instance which provides the client calls functionalities.

III. CURRENT CROSS-DOMAIN RESOURCE SHARING SOLUTIONS

Most of the research in the field of interconnecting different

automotive domains focuses on the modelling and

implementation of multi-ECU system using a single standard.

Since meeting the safety and latency requirements for ADAS

is critical, it dictates the approach to use Adaptive AUTOSAR

for both the ADAS and IVI realm. This way, for the sake of

connectivity between different domains, neither the

CommonAPI nor Android are used, although they are a better

fit for IVI domain, since the development is forced to a single

standard approach which must fit ADAS requirements. The

authors then try to deal with the shortcomings that the

AUTOSAR standard provides in terms of UI as an important

aspect of in-vehicle infotainment [13]. Authors in [14]

presented challenges of modelling ADAS components for

camera resource sharing. However, it is needed to perform

further research on the most suitable communication channel

for the transmission of sensing data and data streams along

with the research on the most suitable communication

mechanisms by considering the entire, end-to-end

communication context for such resources sharing between

domains in automotive, the SOME/IP is not the most effective

solution for such use-cases. Furthermore, taking into

consideration the variety of operating systems on the other

side, such implementation cannot be taken “as is”.

COVESA alliance recognized this challenge and tried to

attain the adaptation between Adaptive AUTOSAR and the

CommonAPI by creating FARACON generator [15]. This

generator is used to translate the interface definition files from

one standard to another. This can be considered as a first step

towards the mapping of the features between standards.

However, it does not solve the cross-domain heterogeneity

issue, which is somewhat more complex.

There are not many papers that provide the actual

proposition for interconnection between ADAS and IVI

domains utilizing different standards. i.e., following

AUTOSAR on ADAS and CommonAPI or Android on IVI

side. The existing solutions have recognized the need for such

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 3 of 7 ISBN 978-86-7466-930-3

binding, but are also typically reduced to simple utilization of

socket-based communication with no actual research

background on the available protocols and state-of-the-art

SOA principles [16]. Additionally, the inter-process

communication paradigms diversity when considering the

various platforms standards is not actually covered even in

papers which provide the extensive solution for heterogenous

in-vehicle environments [17]. Hence, there is no

comprehensive project dealing with all aspects of this topic.

Since this topic is substantive and our project is still in the

development, some of the challenges will not be covered by

this paper but will be addressed in future work instead.

IV. PROPOSED SOLUTION

In this section, we will discuss the possible approaches that

allow remote procedure calls and exchange of data between

ADAS and IVI domains of the vehicle. Our goal is to provide

the connectivity, without compromising the functionality of

the IVI domain offered by the CommonAPI or Android, or the

safety features provided by the AUTOSAR in ADAS domain.

We will design our solution using the service-oriented

architecture principles, which fit perfectly into the scenarios

we want to support. Our focus is on allowing IVI domain

applications to use raw measurement data from ADAS

sensors, as well as the results of some of the algorithms that

run on the ADAS side. The opposite direction of integration is

not possible, due to potential safety issues.

There are several examples of use-cases where the

proposed cross-domain inter-connection can be beneficial. For

example, inputs from cabin camera which is commonly used

for driver monitoring on ADAS side can be shared for video

calls and other applications using camera in IVI domain. This

way, the cost of providing redundant hardware components

would be avoided. On the other hand, data from sensors

monitoring tire pressure, engine temperature and other crucial

components of the vehicle could be easily transferred and

handled by the applications in the IVI domain. These

applications could then not only inform the driver, but also

provide the better user experience by searching for the

recommendations and manuals on the Internet, or help by

finding the route to the nearest mechanic service. The results

of the data processing algorithms such as traffic sign detection

and recognition or driver drowsiness monitoring could also be

used by the IVI domain applications, to propose rest stops,

provide tourist information, etc.

To connect the components of the two domains in the

proposed solution, Ethernet-based communication will be

used. Recently, Ethernet has taken on the role of the vehicle

communication backbone because of its bandwidth,

scalability, flexibility and prevalence. In all of the

aforementioned terms, Ethernet is generally superior to other

in-vehicle buses, which are designed and optimized to fit only

specific use-cases. For example, CAN provides the reliability

which Ethernet cannot achieve because of the different

transmission media access strategies. On the other hand, CAN

is the automotive specific technology which means that

Android, as a standard that was not created solely for the

automotive industry, does not support CAN bus module

natively. Similarly, other in-vehicle buses are created to meet

Fig. 2. Centralized interconnection approach with POSIX OS on IVI side

Fig. 3. Distributed interconnection approach with POSIX OS on IVI side

the requirements of automotive signal-based communication,

where priority is the price and the determinism of the

communication mechanism, not the bandwidth itself. On the

other hand, Ethernet is widely used technology which makes

it suitable for interconnection of different domains. To

exchange data between the domains, we will use SOME/IP,

from the reasons already discussed in Section 2, and it can be

used over the Ethernet network.

Typically, IVI solutions can either run on Linux operating

system and use CommonAPI mechanisms for the inter-

process communication, or they can be Android-based. For

both of these cases, we will propose the solution architectures

in the following sections.

Since Adaptive AUTOSAR and CommonAPI both

implement the SOME/IP communication interfaces, this is the

easiest way to establish the communication between the two

domains in the SOA manner. The ADAS side is implemented

by following Adaptive AUTOSAR standard and the IVI

domain uses the CommonAPI middleware running on the

native operating system such as Linux. This scenario is

depicted in Fig. 2 and Fig. 3. Communication in Adaptive

AUTOSAR is handled by ara::com which natively supports

vsomeip as a library that implements SOME/IP standard. The

same vsomeip implementation is utilized in CommonAPI

SOME/IP stack. This means that serialization and

deserialization of data shall be handled in the same way, so

both sides will be able to interpret data properly.

Information from components on ADAS side are initially

given to the Service Proxy SWC via SOME/IP implemented

within the ara::com module. This data is furtherly forwarded to

the corresponding CommonAPI clients grouped together on

the IVI side in a single Service Proxy Manager instance (Fig.

2). Such inter-domain transfer is performed over SOME/IP on

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 4 of 7 ISBN 978-86-7466-930-3

demand of IVI applications or when the event/change is

captured.

The type of communication between the ADAS and the IVI

does not necessarily have to match the communication

between the ADAS Service Proxy and other SWCs which

means that IVI applications can request the data through the

Service Proxy Manager instance over method mechanism, but

the sharing information on the ADAS side can be sent to the

Service Proxy SWC from the actual service component as an

event for example.

Another approach is to implement separate services for

each CommonAPI client (Fig. 3) so the Service Proxy

components on both sides are unneeded and the information

will be provided from ADAS ara::com services to the IVI

CommonAPI clients included in particular application. The

first approach is easier to scale and can be used with the

variable number of application instances. Also, it can be

favorable from the safety perspective since it can contain

mechanisms to protect from other SWCs from being

jeopardize by IVI applications. On the other hand, the second

is superior in terms of reliability, because there is no single

central node which distributes the data between the

applications. This way, the malfunction of one service does

not affect the operability of others. Furthermore, the

monolithic design is harder to maintain, as even minor

changes require the entire integration cycle. The speed of

access to information is also one of the factors that is on the

side of the distributed approach.

As already said, Android has recently become the operating

system of choice for IVI applications, as most of the users are

familiar with it and it is available on a very large variety of

hardware. The interconnection of the ADAS domain with the

IVI domain running on the Android platform is a bit more

challenging for the implementation. Namely, Android itself

does not have mechanisms to implement SOME/IP client

which can communicate with ADAS side. Therefore, the

CommonAPI must also be used in this scenario in the exact

same way it was the case when non-Android OS was

examined, as it is presented in Fig. 4 and Fig. 5.

The CommonAPI clients are included within an Android

native service and provided information can be transferred to

both, custom applications and HAL modules over AIDL. The

entire CommonAPI stack can be built within an AOSP

(Android Open Source Project maintained by Google) with the

soong build system. Still, the vsomeip itself has some

dependencies, such as boost library, which can cause issues

while building within the AOSP. Further options are to build

CommonAPI client beyond the AOSP, with the Native

Development Kit – NDK, or even to use another

implementation of SOME/IP standard instead of vsomeip,

which would eliminate the dependencies such as the afore-

mentioned boost library. Nevertheless, CommonAPI clients

must be included in Android services so the data from ADAS

can be provided to applications or other services in IVI

domain.

Additionally, the mapping of SOME/IP service-client

communication paradigm from CommonAPI/AUTOSAR to

Android represents a challenge. Namely, AIDL files used for

Fig. 4. Centralized interconnection approach with Android on IVI side

Fig. 5. Distributed interconnection approach with Android on IVI side

interface generation provide the inter-process communication

by marshaling the object instances through the binder. This is

not suitable for the event-triggered traffic. Event-triggered

communication from service to clients within a SOA is

performed in a way that the client itself is only subscribed to

the events from service. This specific case cannot be covered

by using regular AIDL, because AIDL always assumes that the

communication is initiated from the client side

 Our approach was to incorporate the receiving (client) side

for broadcasts and events in the Android native service, and

further distribute this information to the interested applications.

The easiest way to achieve this is to set properties based on the

information received by the Android native service. The

interested applications can then read that particular property.

This approach has a big limitation since the data can only be

used to transfer flags and states since properties do not exist to

be used as IPC mechanisms.

 We went for the another, a slightly more demanding way

for implementation. It assumes the creation of a helper AIDL,

which will pass the interface object as a parameter from the

applications to Android native service, in order to enable the

Android native service to react on event-trigger signals from

CommonAPI by invoking methods from the passed object like

it is a client to the application. Furthermore, in order to avoid

forming a list of registered applications which methods will

be invoked when event-triggers we created additional helper

service in Java with which it will be communicated via that

helper AIDL and which will furtherly provide Intents to the

applications. Additionally, it is even possible to have stand-

alone Java service which will use the CommonAPI via Java

Native Interface – JNI. JNI is necessary in this scenario to

enable inter-operability between Java and C/C++ code, since

the COVESA provides CommonAPI middleware in C++

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 5 of 7 ISBN 978-86-7466-930-3

programming language.

V. CONCLUSION AND FURTHER WORK DIRECTIONS

This paper presented both, the theoretical and the practical

aspects of proposal for service-oriented communication

between ADAS and IVI domains. Background and motivation

for such binding are provided, along with the key challenges

and limitations as it is summarized in Table 1. Several

approaches were elaborated in order to satisfy system

heterogeneity. Additionally, the beneficial use-cases are

discussed in order to emphasize the value of bonding itself.

TABLE I

MAJOR CHALLENGES AND LIMITATIONS

Challenges Limitations

SOA paradigm

mapping

Implementing broadcast/events

with AIDL principles

Centralized or

distributed approach

Prioritization, robustness,

bandwidth

Data transfer

channel

Performance evaluation

Safety Enable safety solution for

Android

Generation of

inter-communication

Verification and tool

qualification

 In our future work, we will focus on the evaluation of the

latency, bandwidth and robustness in order to present

comprehensive comparison of the centralized service proxy

manager approach with the distributed approach, to determine

the optimal design.

The performance of data transfer channel shall be furtherly

examined too by considering the Audio Video Bridging (AVB)

and other mechanisms for big data integration. It is needed to

determine the exact use-cases where the data shall be

transferred only within SOME/IP request/response, and where

it is more suitable to open additional channel for data transfer.

Several aspects regarding data size and safety shall be

analyzed in order to define the optimal approach.

Safety requirements are maybe the most complex of all

challenges that we plan to address. Safety analysis implies the

detail examination on the system level too. It is not enough

only to implement mechanisms for Android native service to

control which applications can use it based on the given

permissions and to properly handle dead listeners and multiple

registrations which is done by now. Hazard analysis on the

system level involves hardware and OS safety competence and

certain communication determinism (Time-Triggered Ethernet

or Time-Sensitive Networking). Android itself currently

cannot have any Safety integrity level but QM [18]. From that

reason, it is mandatory to involve the hypervisor if the

communication must be initiated from the Android [19].

 The final challenge will be to automate the entire process of

providing resources from ADAS to IVI. This means that our

goal will be to generate the translation between ARXML,

FIDL and AIDL, as well as the generation of Android service

along with the code that is responsible for providing resources

from service on ADAS side to the IVI realm.

ACKNOWLEDGMENT

This research (paper) has been supported by the Ministry of

Education, Science and Technological Development through

project no. 451-03-68/2022-14/ 200156 “Innovative scientific

and artistic research from the FTS (activity) domain”.

REFERENCES

[1] P. Bajaj, M. Khanapurkar, “Automotive networks based intra-vehicular
communication applications. New Advances in Vehicular Technology

and Automotive Engineering”, pp. 207-230, (2012).

[2] B. Glas, J. Guajardo, H. Hacioglu, M. Ihle, K. Wehefritz, A. Yavuz,
“Signal-based automotive communication security and its interplay with

safety requirements.”, In Proceedings of Embedded Security in Cars

Conference, 2012
[3] M. Bellanger, E. Marmounier, E, “Service Oriented Architecture:

impacts and challenges of an architecture paradigm change”, In 10th

European Congress on Embedded Real Time Software and Systems,
(2020).

[4] G. L. Gopu, K. V. Kavitha, J. Joy, “Service oriented architecture based

connectivity of automotive ecus”, In 2016 International Conference on
Circuit, Power and Computing Technologies (ICCPCT), pp. 1-4, (2016).

[5] “Example for a Serialization Protocol (SOME/IP)”, [Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
1/AUTOSAR_TR_SomeIpExample.pdf”, last accessed 2022/10/1.

[6] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, J. Teich, “Formal analysis

of the startup delay of SOME/IP service discovery”, In 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.

49-54, (2015).

[7] "Welcome to FRANCA!” [Online]. Available:
https://github.com/franca/franca, last accessed 2022/10/1.

[8] “CommonAPICppUserGuide”, [Online]. Available:

https://usermanual.wiki/Document/CommonAPICppUserGuide.112624
4679/html, last accessed 2022/10/1.

[9] G. Macario, M. Torchiano, M. Violante, M., “An in-vehicle

infotainment software architecture based on google android”, In 2009
IEEE International Symposium on Industrial Embedded Systems, pp.

257-260, (2009).

[10] N. Pajic, M. Bjelica, “Integrating Android to Next Generation
Vehicles”, In 2018 Zooming Innovation in Consumer Technologies

Conference (ZINC), pp. 152-155, (2018).

[11] “Android Interface Definition Language(AIDL)” [Online]. Available:
https://developer.android.com/guide/components/aidl, last accessed

2022/10/1.

[12] S. Fürst, M. Bechter, “AUTOSAR for connected and autonomous
vehicles: The AUTOSAR adaptive platform”, In 2016 46th annual

IEEE/IFIP international conference on Dependable Systems and

Networks Workshop (DSN-W), pp. 215-217, (2016).
[13] S. Aust, ”Paving the way for connected cars with adaptive AUTOSAR

and AGL”, In 2018 IEEE 43rd Conference on Local Computer

Networks Workshops (LCN Workshops), pp. 53-58, (2018).

[14] M. Kotur, N. Lukić, M. Krunić, G. Velikić, “One solution of camera

service in AUTOSAR ADAPTIVE environment”, In 2020 IEEE 10th
International Conference on Consumer Electronics, pp. 1-5, 2020.

[15] “Franca/ ARA:COM Interoperability”, [Online]. Available:

https://at.projects.genivi.org/wiki/download/attachments/16026116/GE
NIVI%20Franca-ARA-COM-tech-brief-20181219.pdf, last accessed

2022/10/1.

[16] K. Omerovic, J. Janjatovic, M. Milosevic, T. Maruna, “Supporting
sensor fusion in next generation android In-Vehicle infotainment units”,

In 2016 IEEE 6th International Conference on Consumer Electronics-

Berlin (ICCE-Berlin), pp. 187-189, (2016).
[17] M. Milosevic, M. Z. Bjelica, T. Maruna, N. Teslic, “Software platform

for heterogeneous in-vehicle environments”, In IEEE Transactions on

Consumer Electronics, pp. 213-221, (2018).
[18] L. Perneel, H. Fayyad-Kazan, M. Timmerman, “Can Android be used

for real-time purposes?”, In 2012 International Conference on Computer

Systems and Industrial Informatics, pp. 1-6, (2012).

[19] M. Bjelica, Z. Lukac, “Central vehicle computer design: software taking

over”, IEEE Consumer Electronics Magazine, 8(6), 84-90, 2019.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 6 of 7 ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 7 of 7 ISBN 978-86-7466-930-3

