


Abstract—Obtaining programming skills is one of the most

important prerequisites for a future career of every electrical

or software engineer. The programming expertise is best

acquired by gradually advancing from simpler to more

complex programming paradigms, architectures, and

languages. That being the case, a restrictive educational

computer architecture – picoComputer, along with a

development environment, was developed at the University of

Belgrade, School of Electrical Engineering to early expose the

students to the concepts of assembly language programming.

Having in mind that programming skills are successfully

attained only through practical work, such as homework

assignments, projects, and laboratory exercises, some more

contemporary picoComputer simulation environments were

implemented, including MessyLab desktop application and a

Picosim web-based solution. However, programming courses

at our school are massive and require the utilization of online

learning platforms, aiming to properly achieve a scalable

learning process. Hence, we employed Moodle E-Learning

platform, as well as the CodeRunner plugin, to facilitate and

accelerate the teaching and assessing processes in both of our

major programming courses. CodeRunner plugin supports

various widespread programming languages and is also highly

programmable, which is why the integration of picoComputer

architecture within a contemporary learning system arose as

an opportunity.

Index Terms—E-Learning; automated code assessment;

Moodle; picoComputer

I. INTRODUCTION

Strong programming expertise is one of the fundamental

abilities of a contemporary software engineer and a

necessary quality of an electrical engineer, as well. Gaining

programming practice is essential for not only solving real-

world problems in software but also for memory sharpening

and achieving an ability to efficiently resolve various

problems that are seemingly outside of the programming

scope.

Jovan Đukić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

dj@etf.bg.ac.rs)

Vladimir Jocović is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,

Serbia (e-mail: jocke@etf.bg.ac.rs)

Marko Mišić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

marko.misic@etf.bg.ac.rs), (https://orcid.org/0000-0002-7369-4010).

Milo Tomašević is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

mvt@etf.bg.ac.rs)

An effective approach to adopting good programming

skills requires a strong theoretical foundation, which is

being acquired through traditional methods of lecturing, in

addition to a practical approach, which includes homework

assignments, larger projects, and laboratory exercises [1].

Programming courses at the School of Electrical

Engineering, the University of Belgrade, are mandatory for

all first-year students and they are organized into two one-

semester courses - Programming 1 and Programming 2.

Both courses are mainly focused on studying programming

languages (Python and C) and introduce different

programming paradigms. They start with a low-level

assembly language and continue with a more complex

procedural and to some extent object-oriented programming

paradigm. Moreover, course topics are permeated with basic

data structures and code complexity topics.

Our first-year programming courses are attended by a vast

number of students (up to a thousand). These massive

courses impose a lot of overhead regarding the process of

qualitative assessing the students’ work and administering

the course contents, as well. Hence, there was a need to

establish online learning platforms and other tools intending

to ease the whole process of managing these huge courses,

as well as disburdening the already overexerted teaching

staff. Our first experiences with Moodle E-Learning

platform in programming courses are described in [2]. In our

previous efforts, we also had a good experience with

Moodle e-learning platform for other computer engineering

courses [3], as well as with other tools for student

assessment [4], analysis of results [1], and source code

plagiarism detection [5, 6] which are all widely used in

programming education. For all those reasons, we decided

to implement appropriate support for the emulation of

picoComputer assembly codes in Moodle e-learning

platform, as well. We describe our motivation and the

details of implementation in the rest of the paper.

The second section expresses the reasons behind the

choice to move mandatory programming courses to the e-

learning Moodle platform and the course organization

within it, as well as the examination process using

CodeRunner plugin. The third section presents in more

detail the in-house developed architecture for teaching

assembly language programming - picoComputer (pC). The

fourth section describes the present-day implemented

system for compilation, execution, and evaluation of source

codes written in the pC assembly language and its

integration with the CodeRunner plugin within Moodle

platform. The fifth section illustrates the evaluation process

and the results obtained by system testing. Finally, a brief

conclusion and future work are given in the last section.

Automated grading system

for picoComputer assembly codes

integrated within E-Learning platform

Jovan Đukić, Vladimir Jocović, Marko Mišić, Member, IEEE, and Milo Tomašević

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.2 - Page 1 of 5 ISBN 978-86-7466-930-3

mailto:dj@etf.bg.ac.rs
../../../../../Users/mvt/Downloads/jocke@etf.bg.ac.rs
../../../../../Users/mvt/Downloads/marko.misic@etf.bg.ac.rs
https://orcid.org/0000-0002-7369-4010
../../../../../Users/mvt/Downloads/mvt@etf.bg.ac.rs

II. MOODLE PLATFORM AND CODERUNNER PLUGIN

IN PROGRAMMING COURSES

The programming courses lectures at the School of

Electrical Engineering are held by professors and teaching

associates. The professors mostly teach the theoretical

aspects of the currently studied programming topics, giving

emphasis to some important essences needed for successful

mastering of the practical programming tasks. Bearing that

in mind, the teaching associates organize auditory exercises

in a more practical manner, thus those classes are dedicated

to programming practices only.

Each elementary problem and some intermediate

programming tasks are conducted alongside students,

aiming to strengthen and solidify their ascending

programming skills, as well as to introduce new approaches

to solving programming problems. Simple programming

tasks were solved using an integrated development

environment, such as PyCharm for Python or Microsoft

Visual Studio for C, while the more complex ones were

worked out on the Moodle platform using the CodeRunner

plugin.

Moodle is an online learning platform that allows teachers

to create courses for students and to grade their work in

those courses using tests. The platform supports a variety of

plugins, and we found the CodeRunner plugin the most

useful for our grading purposes. This plugin introduces a

new type of question, which allows teachers to assess and

grade students’ source codes. Correctness of the students’

codes is partially verified using an automated testing process

implemented by the teaching associates, who managed to

appropriately configure the plugin using a custom Python

script. This feature places the CodeRunner plugin at the top

of the list of supported plugins. Unfortunately, some code

characteristics still need to be checked manually, e.g.,

coding style and efficiency.

The example that demonstrates the usage of the Moodle

platform is shown in Figure 1. It illustrates the exercise

concerning the linked list data structure. The exercise is

carried out in C programming language and consists of basic

operations performed on linked lists: insertion and deletion

of elements, list traverse operations, etc. Before a problem is

approached practically, the topic is explained using a

PowerPoint presentation. The task itself is straightforward

and performed on a simple linked list of integers.

Intending to make the topic of linked lists more

interesting, a big task is organized as a series of smaller

tasks for a more comprehensive understanding. The task is

divided into smaller task sets of varying difficulty. Former

task sets consist of commonly used linked list operations

and latter task sets functionally depend on the previous task

sets. This way the goal is to incrementally build and test the

solution and to teach students one of the most important

programming principles – code reusability.

As shown in Figure 1, a question has a small table at the

top of the page which contains the test input data and the

expected output data. Below the test cases table, there is a

text area for the code itself. The CodeRunner plugin also

includes syntax coloring which is an additional advantage

for the students since it can indicate the errors that would be

very hard to find in a classical exam notebook.

Figure 1 A CodeRunner question in C

After the required piece of code is written in the provided

text area, the students can check its correctness by clicking

on the check button. When the button is clicked, the

contents of the text area are sent to a server dedicated to

checking and grading CodeRunner questions. The server

first compiles the given code and executes it using the

supplied test cases. After execution, the server collects the

output and compares it with the expected output.

The main advantage of the CodeRunner plugin for

Moodle platform is that the entire process of code checking

is configurable [7]. This is achieved through Python scripts

which are executed each time a student checks the question.

Furthermore, the comparison of the expected and collected

output can be graded line by line, thus allowing the students

to receive partial points for each successfully passed test

case. After the outputs are compared, the result table, shown

below the text area in Figure 1, is created giving feedback

and their scores to the students, while pointing them to

possible errors in the code.

In the last few years, teaching associates were able to

master the craft of the plugin configuration and managed to

successfully port programming tasks written in Python and

C programming languages to the CodeRunner plugin. These

high-level programming languages are the foundation of our

mandatory first-year courses. Details of the porting process

of these high-level languages and further information are

presented in [2]. The CodeRunner plugin was successfully

used at other universities in other contexts for Python and

C++, as well [8].

However, before introducing the students to the concepts

of high-level programming languages, they are taught some

elementary concepts of low-level assembly programming.

Being a relatively minor part of the course, it required an

underlying educational architecture that would be quite

restrictive, and that’s why the aforementioned picoComputer

architecture is envisioned and developed. Considering the

nature of the low-level languages, the written assembly code

can frequently be hard to read, maintain and debug. Even

when the source code is syntactically correct, its possible

semantic flaws could be tedious to discover. Until recently,

teaching associates had to manually inspect the source code,

which can devour plenty of time and energy, even for simple

programming problems.

Taking these circumstances into account and having a

positive experience gained from porting high-level

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.2 - Page 2 of 5 ISBN 978-86-7466-930-3

programming languages such as Python and C to Moodle

using the CodeRunner plugin, teaching associates decided to

establish a system that could verify and test the students’

solutions written in the picoComputer assembly language on

the e-learning platform. Nevertheless, the task of

implementing such a system is inherently harder than above

mentioned porting challenges. Teaching associates had to

provide not only a configured environment for executing

students’ source codes using test examples but also an

implementation of a compiler and an emulator for a source

code written in assembly language was necessary. These

components were not needed in previous porting

undertakings, since there are numerous compilers and

interpreters for widespread programming languages,

including C and Python.

III. PICOCOMPUTER

In 1989. Prof. Jozo Dujmović designed a computer

architecture named picoComputer (pC) [9] and developed a

DOS application pC Assembler and Simulator (pCAS). His

intention was to facilitate the teaching and understanding of

the assembly languages, which are naturally, due to their

low-level nature, to some degree demanding. Since only a

part of the introductory programming course is devoted to

low-level programming, the pC is designed as a quite

restrictive architecture as implied by its name. However,

even with its restrictive scope, pC is still very useful. In

order to provide more convenient environments, two tools

have been recently developed at our school, MessyLab IDE

[10], and a web online environment called picoSim [11].

Although the picoComputer architecture is more than 30

years old, it is still relevant nowadays. Its aim is to provide a

framework for demonstrating assembly-level programming.

It follows the classical Von Neumann architecture and, even

though the characteristics of various components have

changed throughout time and the instruction sets are getting

more and more complex, the basic principles of computer

structure have not changed a lot. The picoComputer

generally consists of the Central Processing Unit, Random

Access Memory, and Input/Output devices, which are all

connected using a shared Bus, as shown in Figure 2.

Figure 2 The picoComputer architecture

The Central Processing Unit has several internal registers,

yet none of them are directly accessible as the instruction

operands. Because of a limited instruction format, there are

no general-purpose registers. Still, Program Counter (PC),

which points to the next instruction to be executed, and

Stack Pointer (SP), which indicates the top of the stack, are

registers that can be indirectly manipulated by certain

instructions. The value of the PC register is either

incremented after an executed instruction or can be directly

loaded with the branch address by a control instruction. SP

register value is affected by subroutine handling instructions

and.

The Random Access Memory consists of 65536 locations

(memory words), which means that memory addresses are

16 bits wide, while each location is, also, 16 bits wide. The

memory is logically divided into two sections: Fixed Data

Area and Free Area. Fixed Data Area includes the first 8

locations, which are directly accessible through direct

memory addressing. Free Zone is comprised of the

remaining locations and these locations are only accessible

indirectly, through another location from the Fixed Data

Area, using memory indirect addressing. These locations

can be used arbitrarily. The third addressing mode is the

immediate addressing where the operand is found in the

instruction itself.

The input device is a keyboard, and the output device is

the monitor. Numerical data can be entered using a

keyboard, while the screen presents the contents of certain

memory locations. The input/output operations are blocking

operations. Consequently, there is no need for polling a

status register. However, parallelism is not supported.

Every picoComputer program consists of two sections:

the directive section, and the instructions section. There are

two kinds of directives: symbol definition directives and the

origin directive. A symbol definition directive is used to

assign numerical values to symbols to improve code

readability. These symbols are replaced by their numerical

values in the assembling process. Labels are an implicit

means of symbol definitions, and they can be specified by

an identifier attached to any instruction. The origin directive

defines the starting memory location where the executable

code (instruction section containing instructions following

the origin directive) resides.

Every instruction is defined by its symbolic mnemonic

and a variable-length comma-separated list of operands. The

picoComputer format provides up to 3 operands in an

arbitrary instruction. Instructions can occupy one or two

memory words (16 or 32 bits). The operation code and three

operand fields are encoded in four 4-bit nibbles of the first

word, as shown in Figure 3.

Figure 3 Typical picoComputer one-word

instruction format

Hence, a maximum of 16 different operation codes are

supported. Each operand specification consists of i field (1

bit) and a field (3 bits), where i indicates the memory

addressing mode (0 for direct or 1 for indirect), while a field

represents an address from Fixed Zone Area (0-7). The

16-bit immediate operand, when supplied, is stored in the

second instruction word. The pC instruction set consists of

the integer arithmetic instructions (addition, subtraction,

multiplication, division), data transfer instruction (scalar or

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.2 - Page 3 of 5 ISBN 978-86-7466-930-3

vector move), conditional branches, subroutine call and

return, I/O instructions, and stop instruction.

IV. ASSESSMENT OF STUDENTS’ PICOCOMPUTER

ASSEMBLY PROGRAMS

As stated, in the second chapter, CodeRunner allows its

users to provide a custom Python script for the purpose of

grading and assessing. This script is executed in a

preconfigured CodeRunner plugin environment, which

provides numerous predefined variables. These variables

can be used to obtain a variety of information about students

from Moodle (i.e., student profile information) and, more

importantly, the answer submitted by the student through the

CodeRunner form. Given that the pC is our custom

assembly language and that the answer is given in a text

form, the authors had to build a custom compiler and an

emulator to be able to grade and assess students’ answers.

The compilation phase consists of text manipulation and

performs syntax and semantic checks specified by the rules

of the assembly language. During this stage, the text is split

into individual lines, which are checked separately. If the

process is successful, the result is a Python list data structure

of integers, where each element represents an individual

memory location. However, if there is an error in the code,

the result of the compilation phase is a list containing

descriptions of each individual erroneous line (line number

and the error description). The unsuccessful compilation

phase is depicted in Figure 4.

Figure 4 Unsuccessful pC compilation phase

If the compilation phase is successful, the following step

is the emulation phase. The input data for the emulation

phase is also a list of integers (i.e., memory locations), the

address of the first instruction provided by the origin

directive and a list of integers representing the input data.

The emulation phase is a simple for-loop, which reads

instructions one by one, executes them and stores their

results in the memory. The exceptions to this workflow are

the IN and OUT instructions. The IN instruction reads one

or more numbers from the input data list, while the OUT

instruction writes the content of one or more memory

locations to the output list. This output list is later used for

comparison with the expected results. Runtime checks are

also performed during this stage. Given the restricted nature

of the pC and the fact that only integer data type is

supported, the only runtime check performed is the division-

by-zero check. This is depicted in Figure 5.

Figure 5 Runtime error checks performed

If both the compilation and the emulation phases are

successful, the result of the emulation phase is compared to

the expected result and the final grade is formed. The

comparison is performed on a line-by-line basis, where each

line gives the same number of points. Finally, the student is

presented with the score table as shown in Figure 6.

Figure 6 Score table for a program

V. SYSTEM TESTING AND EVALUATION PROCESS

During the development, the system was tested with

custom-written programs, which cover all possible valid and

invalid instruction formats. Valid programs consist of

instructions as specified by the pC instruction format. These

programs are relatively easy to write since there is a limited

number of possibilities that are in accordance with the

syntax and semantic rules. However, the number of invalid

formats is far greater in number and, therefore, it is

impossible to cover all of them. Hence, the system was also

tested with the source codes of the students in the previous

years.

Until recently, during exams students used the MessyLab

desktop application to write and self-check their solutions.

Regardless, the students used the Moodle platform to submit

their answers, which were graded manually. We used these

answers to perform evaluation by comparing manual scores

given by the teaching associates and the scores given by the

system. The system was evaluated on students’ programs

after the exams have passed and the results of both

approaches were quite similar. We sincerely hope that the

live results will be as good as these.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.2 - Page 4 of 5 ISBN 978-86-7466-930-3

VI. CONCLUSION

In this paper, we have presented the migration process of a

restrictive educational picoComputer architecture to the

online e-learning Moodle platform using a dedicated

CodeRunner plugin for our introductory programming

course. With this new feature, we have successfully fully

moved all our programming activities within the

Programming 1 course to the LMS. Moodle and

CodeRunner are extensively used during auditory exercises

in the computer lab and examination. The students reacted

very positively to this innovative activity.

Having migrated all programming languages in our

mandatory programming courses, it may seem that the

future work lacks required matter to be considered worthy.

However, the is a significant potential concerning the

available possibilities to parametrize and configure these

types of systems not only to achieve more sophisticated

means of grading, yet also to broaden the spectrum of

conceivable programming task types. In the future, we have

an intention to develop various learning activities in

Moodle, as well to extend our coding exercises pool with

more assignments written in different programming

languages. Moreover, we have in mind to migrate the rest of

our programming courses to such type of learning and

examining.

ACKNOWLEDGMENT

This work was supported by the Science Fund of the

Republic of Serbia, grant no. 6526093, AI-AVANTES, as

well as the Ministry of Education, Science, and

Technological Development of the Republic of Serbia

(III44009 and TR32047). The authors gratefully

acknowledge the financial support.

REFERENCES

[1] M. Mišić, M. Lazić, and J. Protić, "A software tool that helps teachers

in handling, processing and understanding the results of massive
exams," in Proceedings of the Fifth Balkan Conference in

Informatics, 2012: ACM, pp. 259-262.

[2] V. Jocović, J. Đukić, and M. Mišić, "First Experiences with Moodle
and Coderunner Platforms in Programming Course," in Proceedings

of the Tenth International Conference on e-Learning, Belgrade

Metropolitan University, Belgrade, 2019, pp. 81-86.
[3] D. Drašković, M. Mišić, and Ž. Stanisavljević, "Transition from

traditional to LMS supported examining: A case study in computer

engineering," Computer Applications in Engineering Education,

2016.

[4] A. Bošnjaković, J. Protić, D. Bojić, and I. Tartalja, "Automating the

Knowledge Assessment Workflow for Large Student Groups: A
Development Experience," International Journal of Engineering

Education, vol. 31, no. 4, pp. 1058-1070, 2015 2015.

[5] M. Mišić, Ž. Šuštran, and J. Protić, "A Comparison of Software Tools
for Plagiarism Detection in Programming Assignments,"

International Journal of Engineering Education, Article vol. 32, no.

2, pp. 738-748, 2016 2016.
[6] M. J. Mišić, J. Ž. Protić, and M. V. Tomašević, "Improving source

code plagiarism detection: Lessons learned," in 2017 25th

Telecommunication Forum (TELFOR), 2017: IEEE, pp. 1-8.
[7] R. Lobb and J. Harlow, "Coderunner: A tool for assessing computer

programming skills," ACM Inroads, vol. 7, no. 1, pp. 47-51, 2016.

[8] D. Croft and M. England, "Computing with CodeRunner at Coventry
University: Automated summative assessment of Python and C++

code," in Proceedings of the 4th Conference on Computing Education

Practice 2020, 2020, pp. 1-4.

[9] J. J. Dujmović, Programski jezici i metode programiranja – odabrana

poglavlja. Akademska misao, 2004.

[10] M. Anđelković. "MessyLab project." http://messylab.com/ (accessed
April 2022).

[11] N. Miljković. "picoSim project." https://picosim.app/ (accessed April,

2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.2 - Page 5 of 5 ISBN 978-86-7466-930-3

