

Abstract - The use of version control tools together with the

code review techniques is the basis of modern software

development. In order to introduce future software engineers to

these tools, as well as the process of software development, and to

better prepare them for the industry work, the course

“Principles of Software Engineering” was formed at the School

of Electrical Engineering at the University of Belgrade. Within

this course and the team project that students are doing, all the

basic stages of the development of a software system are studied.

One of the biggest challenges in organizing a practical team

project is finding the right tool for code review. This tool should

be suitable for educating future engineers, but also enable

monitoring of students’ progress and evaluation of the work

done. This paper presents the basic needs that a software code

review tool must meet in order to be suitable for use in

education. An analysis of the functionalities of some of the

existing code review tools has been given, as well as the

possibility of applying these tools in education at the School of

Electrical Engineering. The end of the paper presents a proposal

for the best way to implement a tool for code review.

Index terms - teaching methodology, program code review,

software development.

I. INTRODUCTION

Software has become an indispensable part of our daily

lives, and our dependence on software is constantly

increasing. An organization’s success and reputation depend

on its ability to produce and deliver reliable software [1].

Therefore, modern software development requires engineers

to not only know how to program properly and effectively but

also how to develop good engineering practices to make the

codebase healthy and easy to maintain [2]. One of the

techniques used in industrial and open-source projects, which

aims to control the quality of code added to the codebase, is

called code review [3]. The main goal of code review is to

improve the readability and maintainability of the codebase. It

Miloš Obradović is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

milos.obradovic@etf.bg.ac.rs)
Marija Kostić is with the School of Electrical Engineering and the

Innovation Center of the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
marija.kostic@etf.bg.ac.rs), (https://orcid.org/ 0000-0003-4923-3748)

Balša Knežević is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
balsa.knezevic@etf.bg.ac.rs)

Dražen Drašković is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
drazen.draskovic@etf.bg.ac.rs), (https://orcid.org/ 0000-0003-2564-4526)

is a process in which code is reviewed during design and

development by someone other than the author. According to

[2], a well-designed code review process provides several

benefits:

- Allows a reviewer to check the “correctness” of the code

change, i.e., is it possible for the change to introduce bugs

into the codebase.

- Ensures the code change is comprehensible and

understandable to other engineers.

- Enforces consistency across the codebase.

- Psychological and cultural benefits such as promotion of

team ownership, validation, and recognition of one’s

work.

- Enables knowledge sharing.

- Provides a historical record of the code review itself.

Even though it is a widely recommended technique for

improving software quality and increasing developers’

productivity [4], across the industry, code review is far from

the universal practice [2]. Nevertheless, together with the

version control systems, the code review process forms the

foundation of modern software development.

Future software engineers should be familiar with the tools

and processes for version control and code review. Therefore,

it is important for engineering students to review each other’s

source code. However, surprisingly, few engineering courses

in universities and colleges include code review activities [5].

The paper [6] provides an overview of the courses that have

introduced code review in their practical activities

(homework, projects, etc.).

At the School of Electrical Engineering at the University of

Belgrade (SEE-UB), the course “Principles of Software

Engineering” (PSE) was designed to introduce students to the

basic concepts of software engineering. The course covers

various aspects of the software life cycle: specification design

and user requirements, system design, selection of the most

suitable software architecture, implementation, testing,

documentation writing, and basic elements of software project

management. At the core of this course is a team project in

which students go through all phases of the development of a

software system. Their activities range from writing basic

functional specification and design of the system, to the final,

tested and fully functional software product, the so-called

release version. The implementation phase is based on

creating a web-oriented software system on a monolithic or

microservice architecture, using several basic architectural

An overview of software code review tools and

the possibility of their application in teaching at

the School of Electrical Engineering in Belgrade

Miloš Obradović, Marija Kostić, Balša Knežević, Dražen Drašković, Member, IEEE

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 1 of 6 ISBN 978-86-7466-930-3

https://orcid.org/1234-1234-1234-123X
https://orcid.org/1234-1234-1234-123X

and design patterns. In this school year, students can choose to

develop their application using CodeIgniter or Laravel

framework for PHP, or Django framework for Python.

Version control systems and code review process are

studied as well. Within the team project, students learn to

work in a team and to develop functional software, during the

whole semester. Currently, team members are not involved in

the code review and code testing process for other team

members, so it is the desire of teachers that team members

revise each other’s program code. Thus, the author of the

program code will always receive at least one or two reviews

from other members of their team (or optionally members of

another team).

In the third phase, students have to formally review the

source code that some other team is working on. This phase

aims to expand the knowledge and the programming

techniques among students, both through what students see in

other teams’ solutions and through the feedback they receive

from colleagues who have reviewed their solution.

For the course activities to be successful, it is necessary to

find the best software tools that are available for use at the

SEE-UB, which support the version control and code review.

Several control version tools that are open-source are quite

suitable for use in the course. However, it is much more

difficult to find an appropriate system for code review that is

publicly available, motivates students to work regularly on

their project, and reduces the possibility of some team

members avoiding doing their part of the project.

This paper is divided into five sections. The following

section describes the process of code review and gives an

overview of the functionalities of some popular code review

tools. The third section outlines the basic requirements that a

code review tool must fulfill to be used for teaching purposes

at the SEE-UB. The fourth section presents an analysis of

some existing code review tools, and the possibility of their

application in teaching. The final section gives a brief

conclusion of the results of this work and advice on how to

independently implement software code review tools.

II. ANALYSIS OF BASIC FEATURES OF CODE REVIEW TOOLS

Millions of software engineers around the world review

source code daily. This process helps in finding and fixing

bugs and increasing the quality of the codebase. Code reviews

must be done in real-time and in multiple iterations. Thus, the

use of the tools in the code review process must be simple and

clear enough. Modern code review is characterized by being

lightweight. It can be executed at many stages of software

development, but it typically takes place before a code change

is added to a version control codebase. Fig. 1. represents

common steps of a code review process. First, the author

creates a code change and submits it for review. Next,

developers discuss the change and suggest fixes. This is an

iterative process where the author has to deal with the

suggested changes. Finally, when one or more reviewers

approve the change, it can be added to the codebase. It is also

possible to reject a code change [7].

Table I shows the basic features of the code review tools.

Only tools that support Git version control system were

considered in the analysis. Many of the analyzed tools also

support other platforms. Only those functionalities related to

the code review process were observed.

Fig. 1. Common steps of a code review process [8].

III. NECESSARY CODE REVIEW TOOL FUNCTIONALITIES

This section presents in detail the basic functionalities of

the code review tool that are necessary for the course. Some

functionalities are important for the code review and should

convey what that process looks like in practice. On the other

hand, other functionalities are important for the teaching

process and student collaboration on their first team project

during their studies. They should motivate students to work in

a team and highlight their individual programming and code

review abilities. They should also provide better support for

documenting a newly developed software system and

commenting on different types of artifacts realized in the

project phases.

As already noted, this is the first team project in their

bachelor’s academic studies. It is important that students

cooperate well while writing a nice and readable source code,

which could be upgraded later with additional modules.

Currently, the team project consists of the following phases:

0. Project proposal.

1. Conceptual solution of the project with the basic

functional specification.

2. Development of all use cases, one document for each

functionality, and realization of the prototype in a tool

for prototype development, e.g., Pencil.

3. Formal inspection of the previous phases.

4. Database modeling.

5. UML modeling of the proposed web application.

6. Implementation of a system as a web application.

7. Testing the web application.

8. Final presentation and software documentation.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 2 of 6 ISBN 978-86-7466-930-3

TABLE I OVERVIEW OF CODE REVIEW TOOLS AND THEIR BASIC FEATURES AND FUNCTIONALITIES.

Tool

Feature

Bitbucket
Server

[9]

CodeFlow

[10]

Collaborator

(previous

version:

Code
Collaborator)

[11]

Critique

(previous
version:

Mondrian)

[2] [12]

Crucible

[13]

Gerrit

(fork of

Rietveld)
[14] [15]

GitHub

[16]

GitLab

[17]

Space /
Upsource

[18]

Rhodecode

[19]

Review Board

[20]

Maintainer Attlassian Microsoft
SmartBear
Software

Google

Attlassian

(former:

Cenqua)

Google
GitHub Inc.
(Microsoft)

GitLab
Inc.

Jetbrains RhodeCode reviewboard.org

Year of

origin
2012 2009 2003 2006 2010 2009 2008 2014 2020 2010 2006

Technology

stack
Java N/A N/A N/A Java

Java

(1st ver.
Python)

Ruby,

ECMAScript,
Go, C

Ruby, Go,

Vue.js

Java,

Kotlin

Python

(Pylons
framework)

Python, Django

License Proprietary Proprietary Proprietary Proprietary Proprietary Apache v2 Proprietary MIT Apache v2 AGPL v3 MIT

Open source no no yes no no yes no yes no yes yes

Number of

users

~10

million

89% of
Microsoft

employees

~20 000 ~50000 N/A N/A ~73 million
~30

million
N/A N/A N/A

Maximal
repository

memory

capacity

4 GB N/A N/A 1 TB N/A 1 TB 100 GB 10 GB
10 GB

(free)
N/A N/A

Maximal
file memory

capacity

1 GB N/A N/A N/A N/A
set by

admin
2 GB 10 GB 10 GB 10 GB N/A

Repository
privacy

Up to 5
private-

free,

unlimited
public

N/A N/A N/A N/A
Unlimited
local repo.

Unlimited

public and

private

Unlimited Unlimited N/A
Private for a fee

and public

Solution

type
Web-based Standalone Web-based Web-based Web-based Web-based Web-based

Web-

based

Standalone,

Web-based

Standalone,

Web-based
Web-based

Version

control
systems

support

Git,
Mercurial

Git

Git, SVN,

TFS,

Perforce,
CVS,

ClearCase,

RTC

Git, Piper

Git,

Mercurial,

CVS,

Subversion,
Perforce

Git Git Git Git

Git,

Mercurial,

Subversion

Git, Mercurial,
CVS,

Subversion,

Perforce,
Bazzar,

ClearCase, TFS,

IBM Rational
ClearCase, HCL

Review

document,
pictures and

diagrams

N/A N/A No Yes N/A Yes No No N/A No No

Review at

character
level

(prog.code)

No Yes No Yes No Yes No No No No No

Integration
with project

management

tools

Jira, Trello N/A Jira N/A Jira Jira Jira, Trello Jira Trello

Jira, Trello,

Redmine,
Pivotal

Asana, I Done

This, Trello

Integration
with other

tools

AWS,
Crucible,

Jenkins,

Bamboo,
MS Azure,

Docker

Hub,
NPM,

Sonar

Visual

Studio

Eclipse,
Visual

Studio, IBM

Rational
Team

Concert, MS

Office,
Adobe

Reader

N/A Bitbucket N/A

AWS, Slack,
CodeFrash,

Semaphore,

Asana,
Azure,

Google

Cloud,
Heroku,

Travis

N/A

IDE (free),
Google

Calendar

(Team), G
Suite,

Microsoft

Office365,
Teamcity,

Jenkins

Jenkins,

Travis CI,

TeamCity,
Confluence,

Slack,

HipChat,
AppEnlight

Jenkins, Travis

CI, Slack,
Mattermostm

CircleCI,

Discord,

In the third phase, the formal inspection process is carried

out according to the standard for formal inspection [8] and

consists of six activities/steps: planning, product review,

inspection meeting, realization of meeting minutes with the

defect report and verification of minutes, work on corrections

and final follow-up meeting to verify the corrected product. In

this phase, one team of students performs a formal inspection

to another team by checking all the files and documents made

up to that point. The result of this phase are the reports on the

formal inspection. These reports are sent to the author team

for them to correct all identified shortcomings and defects,

and synchronize files from the first two phases of the project.

Such formal inspection could be carried out after some lather

phases.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 3 of 6 ISBN 978-86-7466-930-3

In the sixth phase, the implementation of the software

system, inspection of the source code is necessary, which has

been optional so far. This paper aims to decide which

software tool would be suitable for students to use in this

phase. The functionalities necessary to be part of such a

software tool are presented in the following subsections.

A. Availability of tools for use at the SEE-UB

The tool needs to be completely free to use or to have an

academic license. Big corporations usually develop their own

tools for code review, but do not make them publicly

available. Other companies are actively working on the tools

for software development, but their solutions are expensive,

especially taking into consideration that tool will be used by

several hundred students. As the code review techniques are

primarily used in the industry, and less as a means of

education within academic institutions [5], in the rest of this

paper, only open-source tools are considered. Among the most

well-known tools that offered packages with academic

licenses, the following tools GitHub, Atlassian Bitbucket and

JetBrains Space are discussed in Table 1.

B. Roles within the program code review process

The code review largely depends on the participants in the

process itself. Currently, there is no universal standard in the

software industry that defines exactly which people should

check every change in a project [21][22]. Each company

defines its own procedures for the reviewer selection process

(Fig. 1, step 2). As part of the code review, there are also

persons who are only in charge of checking the style of

writing the program code, but not for checking the correctness

of the functionality of the code [21][22].

For the course PSE there are several required functionalities

related to the distribution of different roles:

- Within a single project, all students can participate in

the development of the software solution, and all of

them are required to review each code change, written

by another team member.

- For some changes and monitoring of the program code,

it should be possible to add students from other teams

as code reviewers. It is necessary to enable manual

addition of reviewers or addition based on the

programming language/framework. As projects are

developed in different programming languages (three

different frameworks), it is good that the student, a

member of another team, is sufficiently familiar with

the syntax of that programming language, in which the

authors developed their system. Comments by

reviewers more familiar with the code, will be much

more useful for the author [8].

- Teaching staff should be automatically added to all the

teams. They should be able to just follow students’

work without the obligation to review all their code

changes, or with possibility to write their own reviews.

C. Possibility of anonymous code review

Research shows that significant discrimination occurs

during code review when the authors of the program code or

the authors of other documents are known. Discrimination can

be based on gender, race, nationality, or age [22].

Additionally, in the school environment, it often happens that

students with a lower average grade are afraid to criticize or

point out some mistakes of students with higher grades. To

motivate students to take the code review process as seriously

as possible, as an important part of software development, and

to reduce the effects of student discrimination and shyness,

the aim is to use a tool that supports anonymous code review.

Also, an anonymous review would reduce the possibility of

students who know each other making personal arrangements.

For example, they could decide to not find many mistakes in

each other’s code changes to save time they are spending on

the project.

D. Ability to check the style of the program code before the

code review

Static program code analysis techniques check the structure

of the source code without having to execute the program

itself. Their objective is to find defects early in the

development process. This approach dramatically accelerates

the code review process because reviewers can now focus

only on the functionality and implementation of the code

segment [23]. Some examples of issues that static analyzers

can detect are constant expressions that overflow,

uninitialized variables, tests that are never run, etc. Next to

finding bugs, these tools can help verify that the code is

following best practices, style guides, naming conventions,

etc. in order to prevent or reduce technical debt [2]. The

procedures that would be used within the project may include:

writing unit tests and code coverage techniques, by each team

member, for their developed parts of the program code,

specific styles and precisely defined types of comments,

prescribed by course teachers, etc.

As static program code analyzers reduce the cost of

software development, many development environments

today use them extensively. However, in the case of the

course PSE, students have the freedom to choose any

available development environment. A static code analyzer

that supports PHP and Python programming languages is

required to successfully realize the project within this course.

E. Ability to use tools to review types of files other than the

program code

As already mentioned, through the course PSE, students are

learning about different phases of software development.

Some of the activities students face for the first time are:

writing basic functional specifications, developing use case

scenarios, testing web applications, and writing appropriate

documentation. Next to the source code, students have to

work on and produce documents of many different types.

Therefore, the tool for code review should support reviewing

files that are not source code. The relevant additional types of

files are documents, images or specific diagrams, and other

multimedia files.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 4 of 6 ISBN 978-86-7466-930-3

F. Ability for the teacher to access basic statistics on tool

usage and change the basic code review settings

Teachers should have privileges and advanced

functionalities available to them. One of these functionalities

is the possibility to set up the code review process. This

means that teachers should be able to form teams, control

whether anonymous code reviewing is active and determine

who are required reviews of some projects. Different statistics

about students’ work, and contributions should be also

available. All this will help in further improving teaching by

finding the best setup for the code review process that

maximally engages students.

IV. TESTING POPULAR AND AVAILABLE CODE REVIEW TOOLS

This section shows the test results of some popular software

code review tools. As explained in subsection A of the third

section, for a tool to be used in teaching at the SEE-UB, it

must be free for public use. The work of the following tools

that meet this condition was tested in detail: Gerrit, GitHub,

and GitLab.

Testing of three popular and publicly available tools was

performed as follows. The first step is to create a project and

make it available on a version control system. After that, it is

necessary to do a basic review of the program code within

which the tools are tested with basic files for web page

structure (html), web page layout (css), program code files (js,

py, and php) and files with commands to work with the

database (sql). In the next step, the behavior of the code

review tool is tested when files that do not contain program

code were added to the project. In this step, the behavior of

the tools is tested when basic document types (docx and pdf),

images (jpg and png), and diagrams (uml) are added to the

project. In the last phase of testing the software code review

tool, it was checked whether the tool supports other

functionalities described in the third chapter.

A. Availability, integration with Git systems, and the

possibility to extend functionalities

All three tools have a basic version that is free for public

use. Gerrit and Gitlab have been developed based on open-

source code, which opens opportunities to independently

upgrade the platform and add new functionalities per personal

requirements. GitHub, on the other hand, is a closed-source

environment, but it has a free version and offers good support

for developing open-source projects. The only way to add new

features to GitHub can be achieved through browser plugins.

This is not always a good solution because it adds another

item that students must install and use properly. GitHub also

offers an academic license that brings additional functionality,

but at the time of writing, the authors have not been able to go

through all the necessary steps to obtain this license, so it was

not possible to test its usefulness.

Code review is done through the web interface for all three

tools, while support for version control is done through

command line. In addition to this, the GitHub platform

provides the ability to manage versions using the standalone

application which can further facilitate the education of

students in the use of software development tools. It should

also be noted that the Gerrit platform has an interface that is

not adapted for beginners and has a higher learning curve.

The Gerrit platform can be run on a local machine and then

all data is stored on that machine. The disadvantage of this

approach is that the host machine must always be available

and regularly backed up data so that students do not lose their

projects due to hardware failure. The advantage of this

approach is the ease of adding new functionalities to the tool

because the complete code is executed on a local machine.

Gerrit has a slightly different flow control compared to

standard Git systems. Control has been simplified, which on

the one hand may be good for educating new engineers, but

on the other hand, it does not follow industry standards, and

migrating to another code review git-based system would

require adaptation.

B. Working with different file types

As expected, none of the tools had problems working with

the program code. All tools provide the ability to comment on

each line of program code and set the appropriate status of the

comment which indicates that the code is approved or needs

to be changed before getting approved.

Problems occur when the tools are used with alternative

files such as documents, images, and diagrams. All three tools

can display the image, but they are not able to correctly

display any type of document. Gerrit tool provides a feature

to comment on the entire file, while the other two tools do not

provide this option. As a result, using GitHub and GitLab,

there is no way to comment on added documents and images.

Diagrams cannot be displayed by any of these tools, but

they can display the xml structure that is in the background of

this file. The conclusion is that the best way to work with

diagrams during software development is to attach an image

with each diagram that can be commented.

C. Roles and their permissions within projects and the

possibility of anonymous code review

Gerrit allows you to organize users into different groups

[14]. It is possible to add users to each group individually,

who will have all the authorizations assigned to that group.

Using these groups, the teacher can create a project within

which they will define groups and their privileges. The

teacher also can create subprojects, add students to them and

give them predefined group privileges.

GitLab and GitHub have predefined roles and access rights

within the project. The roles allow the members working on

the project to function well when developing software, but do

not provide any additional benefits for the teacher role.

No platform has support for anonymous code review. One

way to implement an anonymous code review is to make

projects publicly visible. Then someone from the other team

can look at the program code and submit their remarks

externally to the authors of the project. Anonymous review

can also be done through web plugins, but one of the

problems with using anonymous review through external

plugins is that all reviewers must be added to the project,

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 5 of 6 ISBN 978-86-7466-930-3

which indicates who the potential reviewers are and reduces

the effectiveness of anonymous review. Another problem is

relying on the students to use external add-ons correctly,

which is not easy to check, so such solutions are not the best.

All three platforms provide basic pre-processor code

verification capability before review. As no style guide is

currently defined in the course PSE, detailed possibilities of

this functionality have not been examined in this paper and

are the subject of future research.

Table II maps the functionalities required for teaching the

course to the three most popular code review tools, which

were publicly available.
TABLE II

ANALYSIS OF FUNCTIONALITIES OF CODE REVIEW TOOLS FOR THE NEEDS OF

TEACHING THE COURSE PRINCIPLES OF SOFTWARE ENGINEERING

 Gerrit GitLab GitHub

Public availability Yes Yes Yes

Roles in

Code Review

Anonymous

Change Owner,

Project Owner,

Registred User,

Custom Gruop

Guest,

Reporter,

Developer,

Maintainer,

Owner

Read,

Triage,

Write,

Maintain,

Admin

Anonymous code

review
No No No

Static code analysis No
Python,

PHP
Python

Review files with

code
Yes Yes Yes

Review document,

pictures and

diagrams

Can comment

on hole file
No No

Automated user

statistics

Available

through plugins
Yes Yes

Project

configuration
Yes Yes Yes

V. CONCLUSION

This research provides an overview of all the commonly

used code review tools in the software industry. Based on this

research, the authors recommend the use of GitLab software,

because it has user-friendly interfaces, is easy to use, has a

built-in Git version control system, and is based on open-

source code. The main disadvantage of using this platform is

the limit of up to ten users per project when using the free

version.

If you want to develop your code review tool and run it on

a local server, then the authors recommend that you start with

the Gerrit platform, run it on a Linux server and add all the

features you may need locally. All analyzed tools have some

shortcomings and none of them meet all the requirements for

application within the course that was analyzed in this paper.

ACKNOWLEDGMENT

This paper is the result of research on the project

AVANTES funded by the Science Fund of the Republic of

Serbia, within the Program for the development of projects in

the field of artificial intelligence. The authors are grateful for

the financial support.

REFERENCES

[1] Y.-M. Zhu, “Software Reading Techniques: Twenty Techniques for

More Effective Software Review and Inspection,” Solon: Apress, 2016.

[2] T. Winters, T. Manshreck and H. Wright, “Software Engineering at
Google Lessons Learned from Programming Over Time,” O'Reilly

Media Inc., 2020.

[3] F. A. Ackerman, L. S. buchwald and F. H. Lewski, “Software
inspections: An effective verification process.,” IEEE Software 6,, vol.

6, no. 3, pp. 31-36, 1989.

[4] Y. K. Wong, “Modern Software Review: Techniques and
Technologies,” IRM Press, 2006.

[5] V. Garousi, “Applying Peer Reviews in Software Engineering

Education: An Experiment and Lessons Learned,” IEEE Transactions on
Education, vol. 53, no. 2, pp. 182-193, 2010.

[6] T. D. Indriasari, A. Luxton-Reilly and P. Denny, “A review of peer code

review in higher education,” ACM Transactions on Computing
Education (TOCE), vol. 20, no. 3, pp. 1-25, 2020.

[7] P. C. Rigby and C. Bird, “Convergent Contemporary Software Peer

Review Practices,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, Saint Petersburg, 2013.

[8] N. Davila and I. Nunes, “A systematic literature review and taxonomy of

modern code review,” Journal of Systems and Software, vol. 177, 2021.

[8] M. Greiler, “How Code Reviews work at Microsoft,” 22 January 2022.

[Online]. Available: https://www.michaelagreiler.com/code-reviews-at-

microsoft-how-to-code-review-at-a-large-software-company/.

[9] “BitBucket Code Review,” [Online]. Available:

https://bitbucket.org/product/features/code-review. [Accessed: 03 2022].

[10] C. Staff, “CodeFlow: Improving the Code Review Process at
Microsoft,” Communications of the ACM, vol. 62, no. 2, pp. 36-44,

2019.

[11] “Collaborator - Review Code Together,” [Online]. Available:
https://smartbear.com/product/collaborator/overview/. [Accessed: 03

2022].

[12] “Google Mondrian - web-based code review and storage,” [Online].
Available: https://www.niallkennedy.com/blog/2006/11/google-

mondrian.html. [Accessed: 11 2021].

[13] “Crucible,” [Online]. Available:
https://www.atlassian.com/software/crucible. [Accessed: 3 2022].

[14] “Gerrit - Code Review tool,” [Online]. Available:
https://www.gerritcodereview.com/. [Accessed: 12 2021].

[15] L. Milanesio, “Learning Gerrit Code Review,” Birmingham, UK: Packt

Publishing Ltd., 2013.

[16] “GitHub - Code Review process,” [Online]. Available:

https://github.com/features/code-review. [Accessed: 12 2021].

[17] “GitLab - Code Review Guidelines,” [Online]. Available:
https://docs.gitlab.com/ee/development/code_review.html. [Accessed:

12 2021].

[18] “Space - Review Code,” [Online]. Available: https://www.jetbrains.com/
help/space/review-code.html. [Accessed: 4 2022].

[19] “RhodeCode - Code Review,” [Online]. Available:

https://rhodecode.com/features/productivity. [Accessed: 11 2021].

[20] “Review Board - code and document review tool,” [Online]. Available:

https://www.reviewboard.org/. [Accessed: 12 2021].

[21] A. Bosu, M. Greiler and C. Bird, “Characteristics of Useful Code
Reviews: An Empirical Study at Microsoft,” in Proceedings of the

International Conference on Mining Software Repositories, Florence,

Italy, 2015.

[22] E. Murphy-Hill, J. Dicker, M. Hodges, C. Egelman, C. Jaspan, L.

Cheng, E. Kammer, B. Holtz, M. Jorde, A. Dolan and C. Green,

“Engineering Impacts of Anonymous Author Code Review: A Field
Experiment,” IEEE Transactions on Software Engineering, 2021.

[23] V. Balachandran, “Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer
recommendation,” in 2013 35th International Conference on Software

Engineering (ICSE), 2013.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 EDUI1.4 - Page 6 of 6 ISBN 978-86-7466-930-3

