
 

Abstract— In recent years motion capturing technology found 

numerous applications in industry and research areas like human-

robot interaction, medical applications, etc... Those systems can be 

very expensive and might require a lot of setup time. In this paper, 

leveraging the advances in deep learning and computer science, 

the low-cost real-time motion capturing system is presented. The 

system was designed to use off-the-shelf inexpensive cameras, 

freely available software, and a gaming laptop. The system design, 

underlying math principles, reconstruction pipeline, and 

reconstruction results will be discussed in the paper. The 

presented motion capturing system can reconstruct a human pose 

with 33 keypoints in real-time at 17Hz. The whole setup costs less 

than $2500 including the price of the dedicated PC. 

Index Terms— Motion capturing,  Human pose estimation, 

Human-robot interaction, Deep learning  

I. INTRODUCTION 

Motion capture or “MoCap”, for many years now, has been 

recognized in the majority of industries as the highly advanced 

technique of recording movements and transferring the results 

of such recording into digital data. It is widely used in various 

fields from science, through the film industry, to gaming and 

video game development, which makes it broadly applicable 

and remarkably alluring for use in different professional 

spheres [1]. 

In medicine and biomedicine, motion capture is used to 

conduct scientific research and analyses with regard to the 

understanding of human physiology, particularly the bipedal 

locomotion. This knowledge can contribute to understanding 

the effects of injuries and required rehabilitation [2]. In 

addition, MoCap havs the ability to record facial expressions of 

humans, which can help us in further understanding of human 

emotions. In robotics MoCap is used for constructing 

dynamically stable humanoid movement and for capturing 

motion trajectory of a human [3, 4]. 

Furthermore, the filmmaking and video games industry uses 

motion capture to record the physical actions of the live actors 

participating in the movies, enabling the real-life movie 

characters to be “transcribed” into the computer animations, 

i.e., digital characters. Nonetheless, the MoCap is often used 

for the creation of special effects in different animated content 

such as movies, video games, etc.[5] Also, in human-robot 

interaction, the MoCap is used to record, evaluate and classify 

human behavior patterns. Also, MoCap is extensively used to 

record and evaluate human behavior, and modify robot 

behavior based on recognized human behavior pattern [6]. 
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It may be easily concluded that, from its beginnings, motion 

capture has been a significant addition to the technical 

processes throughout the diverse industries. However, although 

many excellent systems leading to the outstanding results are 

currently present on the market, such as the Vicon Motion1 

Capturing System, the main setback of motion capture as an 

asset able to simplify the variety of industrial processes is the 

fact that its application and practical use are conditioned upon 

expensive hardware and software. Furthermore, some solutions 

such as [7] include complex offline postprocessing following 

the collection of the movement data. For instance, the basic 

equipment, without any upgrades and advancements, that is 

necessary for the Vicon setup amounts to approximately 

$40.000, which is noticeably expensive for the SME. 

Although there are many types of motion capture, optical 

MoCap is most commonly used technology. Optical MoCap 

use multi-camera setup and triangulation to determine position 

of markers in 3D world. There are two types of optical motion 

capture reflective and pulse LED. First technique has reflective 

markers which are placed on actor’s body and because of their 

reflection it becomes easy for software to determine the 

position of markers. On the other hand, pulse LED technique 

has active markers that emission LED light which cameras can 

capture. Both techniques required 50 plus markers on actor’s 

body for motion to be captured. This process requires a lot of 

time for markers to be placed on predefined part of body and 

also markers restrict actor’s movement.  

Regardless of that, the rapid development of the technology 

has through the years led to the possibility of the development 

of low-cost MoCap systems. In addition, the introduction of 

new methods that can extract the pose from image sequence by 

using artificial neural networks lowered the cost of new budget 

MoCap systems. Furthermore, the decrease in the prices of 

usable equipment for the motion capture processes, including 

personal computers and cameras, has affected the realization of 

the more affordable MoCap systems with non-equal but 

satisfying results [8]. Having in mind all previously mentioned, 

we are now able to construct budget MoCap system for less 

than $2500, including all hardware and software, without any 

markers which minimize required time for preparation, allows 

actor’s to move freely and eliminates location restrictions. Tha 

low cost would enable further expansion of use of MoCap. 

Also, removal of required markers and long setup time,  enables 

recording in places where we can’t interfere with the subjects, 

e.g. recording athletes during sport events, behavioral studies 

of people in pubic spaces, interaction of workers with the robot 
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on the factory floor, etc ... The design and implementation of 

such a low-cost system is the main topic of this paper.  

The paper is organized as follows: in Section II we will 

describe the hardware components of the system and how it is 

layed out. In Section III the process for calibrating the system 

will be described. Section IV describes the whole 

reconstruction pipeline, while Section V gives experiment 

results. The paper is concluded in Section VI. 

II. SYSTEM SETUP 

In this section, we will describe the complete system 

architecture, calibration process, and video acquisition. The 

video acquisition and recording system consists of three Intel 

RealSense D415 cameras, which are connected to a PC via a 

USB interface. The placement of the cameras in the room is so 

that each camera is oriented towards the center of the room. 

Since Intel RealSense D415 has narrow field of view, the 

coverage of the visible area is relatively small. This could 

potentially disrupt pose estimation. But as shown later in 

section results this was not a problem. 

 

A. Intrinsic camera calibration 

Because of the camera manufacturing process nature, there 

is a high possibility for it to be assembled imperfectly. This 

imperfection brings distortions to the image. There are two 

major distortions, and those are radial and tangential 

distortions. 

Radial distortion has stronger effect on further points in the 

image and is reflected in such a way that straight lines appear 

curved. Similarly, tangential distortion occurs when camera 

lens is not perfectly aligned with image plane.  

To describe radial and tangential distortion these five 

coefficients are used: k1, k2, k3, p1, p2, where k1, k2 and k3 are 

used to represent radial distortion, while p1 and p2 describe 

tangential distortion [9]. 
 Additionally, during camera calibration, intrinsic camera 

parameters are calculated and these are focal length (fx, fy) and 

optical centers (cx, cy). Intrinsic camera and distortion 

parameters are calculated using OpenCV library. Process of 

calibration consists of multiple image captures, where each 

image is showing black and white chessboard with known 

square size. Images are then processed with the help of 

OpenCV functions which return all necessary parameters as the 

end result. Fig 1. shows example of detected chessboard and its 

corner points during calibration process. 

B. Extrinsic camera calibration 

After finding intrinsic camera parameters, it is necessary to 

determine camera positions in real world, also known as 

extrinsic camera parameters, using chessboard as a reference. 

Again, we are using OpenCV library to calculate these 

transformations and Fig 2. shows example of images 

containing chessboard and its estimated location in the world.  

III. RECONSTRUCTION PIPELINE 

In order to reconstruct the pose of the human in 3D space the 

images coming from cameras have pass through a several 

processing stages. The flow chart of the raw data obtained from 

cameras to the final reconstructed pose is illustrated in Fig. 3. 

Each stage of the reconstruction pipeline will be described in 

detail in subsequent sections.  

 

  

Fig 1. Images acquired for camera calibration with detected chessboards 

 

 

Fig 2. Images used for extrinsic camera calibration  displayed with system 

origin 

A. Image acquisition 

 The first block in the processing pipeline is image 

acquisition from the camera. This operation is the simplest one, 

and the image data from the camera is retrieved by using API 

provided by the camera manufacturer, in this case python 

library pyrealsense2 provided and maintained by Intel. 
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[10] Before retrieving the image, user has to provide camera 

serial number, and desired framerate. 

B. Undistortion 

The obtained image contains some distortion due to lens 

imperfection and assembly errors. Such a distortion will 

introduce errors in the reconstructed pose, so it is extremely 

important to correct it. In section III we have described the 

camera calibration process, and result of it is the distortion 

parameters. In this block, those distortion parameters will be 

used to undistort the obtained image.  

C. Human pose detection 

After obtaining distortion-free images the next step is the 

detection of the human keypoints on the image. Until very 

recently, without special clothing or markers, accurate 

detection of body keypoints was almost impossible. In year 

2017 OpenPose was developed as a first convolutional neural 

network based human pose detection framework.[11] It was 

trained using COCO dataset and it can detect 25 keypoints on 

the human body. Also, it can detect multiple humans captured 

by the camera.  

 Unfortunately, OpenPose, although very accurate, is very 

computationally demanding. In order to run OpenPose real 

time, dedicated GPU is required which would significantly 

increase the total system cost. 

 Alternative was found in MediaPipe [12] developed by 

Google as an open-source cross platform, customizable 

machine learning solution set for live and streaming media. 

One of solutions provided is used for human pose detection and 

tracking. It can infer 33 3D keypoints and background 

segmentation mask on the whole body from RGB video frames 

utilizing BlazePose [13]. The detected keypoints are given in 

Fig 4. The MediaPipe can be set up to detect even higher 

fidelity mode, with total 543 keypoints, with 33 keypoints on 

the body, 21 on each hand and 468 on the face. To be able to 

reconstruct face and whole body, the higher resolution and 

quality camera is required, and for that reason we decided to 

reconstruct only 33 body keypoints. One limitation of this 

framework compared to OpenPose is that it can detect only one 

human in the scene. Multiple humans would inevitably produce 

detection errors. 

3D poses are given relative to pelvis, whose 3D pose is 

unknown, and, if just one camera is used, can suffer from 

unknown scale, leading to wrong 3D pose estimation. Hence, 

we still need multi-camera setup to obtain full 3D position of 

the keypoints.  

 

 

Fig 4. Keypoints detected by BlazePose 

 

D. 3D reconstruction 

After getting positions of all keypoints on all cameras, the 

last step is to reconstruct their positions in a 3D space. To do 

so, let’s assume that we have n cameras. The keypoint in space 

Q can be seen on camera i at the location qi given in pixels. The 

position and rotation matrix of camera i are given with Ti and 

Ri. The intrinsic camera matrix is Mi. These vectors and 

matrices are the result of the calibration process described in 

section IIIA. The setup is illustrated in Fig. 5. Now, having all 

the camera positions, rotation matrices and location of the 

keypoint on all images, the goal is to compute the position of 

the point Q in the 3D space.  

 

Fig. 5 Setup with multiple cameras observing the same point. 

 

To derive equations, we will start from pinhole camera 

model, and projection rule:  

 . (1) 

 
 

Fig 3. Processing pipeline 
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Where si is positive scalar and Mi is intrinsic camera matrix 

projecting points from the space to pixels in image. From that 

equation we can deduce Q: 

 , (2) 

where we wi is again positive scalar equal to 1/si . The 

physical meaning is that a point Q lies on the ray starting from 

center of camera i Ti, that passes through point qi and follows 

direction ui. 

Obviously, this is the ideal case, where cameras are perfectly 

calibrated and keypoint is perfectly detected. In the real world 

we can’t achieve that, so the mentioned ray will pass close, but 

will not contain the point Q. Including that observation we can 

rewrite equation (2): 

  , (3) 

where εi represents the deviation of point Q from ray going 

from Ti, in a direction ui. 

  The position of the point Q will be obtained by 

minimizing the deviation from ideal rays. It is the result of the 

following optimization problem: 

 . (4) 

The meaning of this optimization problem is that the point Q 

that is the detected on n images at location qi is the point in 

space whose total squared distance to all rays starting at Ti, and 

passing through point qi is minimal.  

 

By expressing inserting εi  from equation (3) and inserting it 

into (4) and some matrix manipulation we can the optimization 

problem as: 

 .  (5) 

Such an optimization problem has a well known solution: 

 .  (6) 

where we introduced substitute A for shorter notation and plus 

(+) represents a MP-inverse matrix.  

It is important to note that matrix A has 3n rows and 3+n 

columns and for it to be tall, guaranteeing unique solution n has 

to be at least 2, meaning that we need to see the waypoint at, at 

least two cameras to be able to reconstruct the pose. Detecting 

the same waypoint on more than 2 cameras will produce more 

accurate result. Also, matrix A is different for each keypoint, 

so in order to reconstruct model with e.g 33 keypoints, we need 

to construct 33 different matrices and solve 33 different 

optimization problems.This process has to be performed for 

each recorded frame. 

E. Data post processing 

At this point in pipeline, we have already fully reconstructed 

the 3D pose of all the keypoints. The last basically depends on 

the usage of MoCap system. We can either save data for later 

use, or directly stream it to dedicated video/gaming 

production software, medical application, etc … 

IV. RESULTS 

Complete process of image acquisition, undistortion, pose 

estimation and 3D reconstruction is done on laptop with Intel 

Core i7 10750H, 6 physical & 12 logical core 10th generation 

CPU with 16GB of RAM and Nvidia GeForce 1660TI GPU. 

Even so, we were able to achieve stable 20 FPS. The code has 

been implemented on Ubuntu 20.04 Focal Fossa in Python3 

with extensive use of multiprocess library, enabling 

parallelization. Separate process responsible for image 

acquisition, undistortion and pose estimation was spawned for 

each camera, with one additional process tasked with 3D 

reconstruction, and data post processing.  

 

Fig 6. A frame from all 3 cameras taken at the same time with detected keypoints drawn over 
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In Fig 6, the images from all three cameras taken at the same 

time are shown. The keypoints detected by MediaPipe are 

overlaid on top of the undistorted images. I can be noted that 

not all markers are detected on all 3 images, e.g right arm is not 

detected on first image. Nevertheless, as seen in Fig 7 it can be 

observed that the system was able to reconstruct the full human 

pose, with all keypoints. That comes from the fact that for 3D 

reconstruction we need a keypoint to be detected at minimum 

2 cameras. Detection of a keypoint is more than 2 cameras, 

increases estimation accuracy. It can be noted that the 

reconstructed full body pose closely matches the one shown in 

undistorted images. 

 

 

Fig 7. Full body pose reconstructed from images shown in Fig.6 

 

However, during pose estimation some problems occurred. 

We can observe several frames with incorrectly detected 

human poses as shown in Fig. 8. Those bad reconstructions can 

be a result of several issues. Firstly some body parts can go out 

of recording volume or be occluded by objects in the scene, 

thus preventing MedaPipe to detect keypoints successfully. 

Other issues can come out of just wrong detection pose 

detection as shown in the middle of Fig 9. These images show 

MediaPipes’ inability to estimate human pose in non-standing 

positions. That is a result of MediaPipe being trained on dataset 

which consists mostly of humans in standing position. That 

introduces strong bias in the CNN, which expects the torso to 

be upright. In Fig 9. that was not the case, and MediaPipe has 

detected a chair in the background as humans face and 

shoulders. That frame prevents successful reconstruction. 

V. CONCLUSION 

In this paper we have presented a budget MoCap system. The 

system uses inexpensive of-the shelf cameras with a middle-

range gaming laptop. Used libraries and software are all open 

source, with licenses allowing commercial use. Hence, most of 

the price of the system comes from gaming laptop. The price of 

the full system was under $2500, but uses common hardware 

that we had at our disposal, so the MoCap didn’t cost us any 

money. The framerate that we could have achieved was 20FPS. 

The reconstructed poses closely matched the pose of the actor 

that was recorded and were stable as long as the actor was 

within recording volume. 

Except low price, the system doesn’t require any markers, 

which significantly reduces setup time. There is no need for 

 

Fig 9. A frame from all 3 cameras taken at the same time with detected keypoints drawn over with incorrect human pose detections 

 

Fig 8. Incorrectly reconstructed human pose 
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tedious process of attaching markers to the actor. The other 

benefits from this is that people can be recorded while 

performing their task without interference. That means, the 

person’s motion isn’t modified by the fact that there are 

markers attached to it’s body. For behavioral studies, person’s 

motion can be recorded subject’s knowledge, reducing the 

chance for the person to unconsciously alter the behavior. This 

makes developed MoCap, extremely potent for studies in sport 

science and behavioral studies with potential HMI application. 

Although presented MoCap has a lot of potential there are a 

few issues that would be the topic for the future research. The 

current approach doesn’t include the temporal continuity of the 

recording, but each frame is considered independently. The 

system doesn’t consider human model, which would make 

detection more accurate and more robust to false detections and 

outliers. Finally, current deep learning backend, MediaPipe can 

detect only one person. OpenPose, can be used instead, but that 

comes at the cost of framerate and ability to run system in real 

time or at the price of higher performance and higher price 

hardware.  
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