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Abstract—This paper focuses on analyses of generalized Faster
than Nyquist (FTN) signaling in the presence of additive white
Gaussian noise. A new method for designing pulse shaping
filters, that maximize information rate and simultaneously
obey constraints related to energy distribution of the pulse
autocorrelation function, is proposed. The obtained pulses are
coupled with the minimum mean square error (MMSE) equalizer
used at the receiving side. In addition, potential for their use
without any equalization scheme is also analyzed. Significance of
the proposed approach is verified by comparing designed pulses
with state-of-the-art FTN schemes, that employ raised cosine
pulses, in terms of bit error rate and achievable information
rate. We identify cases when the proposed scheme provides the
same achievable information rate as the standard FTN system
with more than 1.5 dB lower signal-to-noise power (SNR) ratio,
without the equalization, and 0.4 dB lower SNR ratio, if MMSE
equalization is employed.

Index Terms—Faster than Nyquist signaling, MMSE
equalization, pulse shaping

I. INTRODUCTION

In a classical communication system information is
transmitted by using orthogonal pulses (with flat frequency
spectrum) and ideally no inter-symbol interference is
introduced by the transmitter, which is refereed to as the
Nyquist signaling approach. Intense research over the past
years in the area of channel coding and modulation lead to
development of Nyquist transmission systems that operate
close to the ultimate Shannon spectral efficiency bounds,
and obviously, additional improvement must be followed by
the change of Nyquist’s transmission paradigm. With the
invention of new services, mostly associated with the fifth
generation standard for broadband cellular networks (5GNR),
the problem of designing spectral efficient transmission system
comes again under the spotlight. A technique that is capable
to provide a quantum leap in design of spectrally efficient
systems is faster then Nyquist (FTN) signalling.

In FTN signaling systems use of orthogonal pulses
is abandoned and inter-symbol inference is intentionally
introduced. It follows that as the adjacent received
symbols are correlated, conventionally used symbol-by-
symbol detection becomes inappropriate, and information
needs to be extracted by some equalization technique. The
foundations of FTN were laid down by Mazo in 1975
[1], who noticed that communicating with symbol rates
higher than the Nyquist rate, can provide spectrally efficient
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Belgrade, School of Electrical Engineering, 11000 Belgrade, Serbia (e-mails:
mj205018p@student.etf.bg.ac.rs, srdjan.brkic@etf.rs, jelena.certic@etf.rs).

transmission, without degradation in Euclidean distances
between transmitted symbols. Although the aforementioned
insight was revolutionary, it was not fully explored for more
than 30 years. Namely, in 2007 Rusek and Anderson [2]
created the information-theoretic framework for the analysis
of FTN systems and proved that capacity of conventionally
used Nyquist systems (for example with raised cosine (RC)
pules) can be surpassed with FTN signaling. Furthermore, the
same authors showed in [3] that, by increasing the symbol
transmission rate, constrained capacity saturates to a fixed
value – in other words arbitrary spectral efficiency can be
achieved. Their work was refined recently by Ishihara and
Sugiura in [4], where it was shown that conventionally used
RC pulses employed in precoded FTN systems approach
Shannon capacity of the ideal rectangle pulse. For excellent
overview on FTN concepts and technologies we direct readers
to [5].

In order to keep the advantages of FTN over Nyquist
signaling in practical systems, the equalization and channel
coding need to be adjusted. The optimal FTN receiver is
organized in a form of turbo equalization loop [6], where
equalization is performed by employing maximum a posteriori
probability (MAP) detector. Complexity of MAP detection
grows exponentially with increase of symbol rate, making it
infeasible for practical use. On the opposite side, using low
complex equalization, for example MMSE (Minimum Mean
Square Error), may be insufficient to perform significantly
beyond conventional Nyquist systems. This lead to generalized
FTN signaling approach [7], in which conventional pulses,
like RC, are replaced with pulses that are adjusted to a
given equalization scheme. Another benefit of custom pulse
design is ability to adopt to a given practical requirements,
for example peak-to-average power ratio (PAPR) or adjacent
channel leakage power (ACLP), which can vary from one
communication standard to another.

Over the years, different pulse designs were proposed
that can be incorporated into generalized FTN concept. The
most prominent approaches include pulses designed: i) to
minimize Euclidean distance between different realizations
of two random transmitted sequences [8] and bit error rate
of uncoded transmission [9], ii) to maximize information
rate [2], [10], [11], or iii) to obey predefined frequency
domain constraints (and simultaneously limit PAPR) [12]. For
example, Rusek and Anderson in [2] proposed an optimization
procedure in which pulses with predefined number of taps
maximize an upper information rate bound. The procedure
was further expanded by Brkic et al. in [11] to enable arbitrary
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pulse energy distribution in time domain, which can be used
to build generalized FTN systems with limited trellis-based
equalizer complexity.

In this paper we further extend the optimization procedure
presented in [2], [11] in order to make it applicable to FTN
systems with MMSE equalizers, or even to FTN transmission
systems which do not employ any equalization scheme.
Namely, we define additional time domain constraints related
to energy of the pulse autocorrelation function. We verify that
designed pulses outperform state-of-the-art FTN systems (with
RC pulses), for the same symbol rate and ACLP, in terms of
bit error rate as well as achievable information rate in additive
white Gaussian noise (AWGN) channel.

The rest of the paper is organized as follows. In Section
II we briefly describe system model and MMSE equalization
scheme. Section III is dedicated to the optimization procedure,
while numerical results are given in Section IV. Finally,
concluding remarks can be found in Section V.

II. SYSTEM MODEL

Consider an output of the baseband equivalent of the
transmitter

s(t) =
∞∑

k=−∞

akh(t− kT ), (1)

where ak ∈ {±1} corresponds to the k-th transmitted symbol,
T denotes symbol duration and h(t) is the pulse shaping filter.
We assume that h(t) is not orthogonal with respect to the
transmitting sample rate, i.e, it intentionally introduces ISI and
that h(t) can be represented as weighted sum of wider band
pulses

h(t) =

L−1∑
l=0

blψ(t− lT ), (2)

where ψ(t) is a pulse orthogonal to the sampling rate 1/T ,
while b = (b0 . . . , bL−1) corresponds to a vector of the
sampled coefficients, i.e, bl = h(lT ). Note that we restrict
the effect of ISI to L consecutive symbols and that energy of
the impulse response is considered to be unitary.

The waveform s(t) is transmitted through additive white
Gaussian (AWGN) channel, described with energy per symbol
to noise power spectral density (Es/N0) metric.

At the receiver side in this paper we consider two
observation models: i) orthogonal basis model (OBM) [13] and
ii) Ungerboeck model [14] without the equalization. According
to the OBM, receiving filter is matched to ψ(t) (not h(t)),
which means that noise at the receiver input is white. In our
model we assume that ψ(t) is square root raised cosine pulse
with roll-off 0.1. To verify the performance of h(t) on the
OBM, we employ MMSE equalizer. Motivated by the recent
findings, reported in [15], that FTN signaling can perform
satisfactory even without an equalizer implemented in the
receiver side, we here consider such detection scheme, for the
case of the Ungerboeck observation model. In the Ungerboeck
model receiving filter is matched to h(t), which maximizes

Es/N0 metric; however, received noise sequence becomes
correlated.

We next briefly explain MMSE equalization used in the
OBM (for more details one could see [16]). Let rn =
(rn−N2

, rn−N2+1, . . . , rn+N1
)T denote a sequence at input of

the MMSE equalizer used to estimate transmitted symbol an,
where T is transposition sign. The parameters N1 and N2

specify the length of the noncausal and the causal part of the
MMSE filter. Then, finite impulse response (FIR) MMSE filter
coefficients cn can be obtained as follows

cn = Cov(rn, rn)−1 × Cov(r, an), (3)

where the covariance operator is given by Cov(x,y) =
E(xyH) − E(x)E(yH), where E(·) denotes mathematical
expectation, and H is Hermitian operator. The symbol estimate
ân is obtained by ân = cHn rn. It should be noted that values
N1 and N2 are dependent on h(t).

III. OPTIMIZATION OF PULSE SHAPING FILTER

In this section we state the optimization problem for finding
pulse shaping filter coefficients b that maximize the achievable
information rate (AIR) and are also adjusted to the equalizing
scheme. Fundamentals of the AIR-based optimization can be
found in [17], and we first briefly explain key concept of the
optimization, and then highlight modifications introduced in
order to adjust the optimization procedure to the system model,
given in Section II.

The procedure from [17] allows pulse design for arbitrary
ACLP value and the filter length L. Let H(f) denotes Fourier
transform of h(t). Then we can define, a complement of ACLP,
the concentration of pulse energy in W Hz as follows

β =

∫W

−W
|H(f)|2df∫∞

−∞ |H(f)|2df
. (4)

Without loss of generality, we can consider normalized
bandwidth defined as w = W × T , and notice that w = 0.5
corresponds to Nyquist signaling while when w < 0.5 we
are communicating in FTN signaling fashion. The amount of
ISI introduced at transmitter side is inversely proportional to
w. Alternatively, the energy concentration β can expressed
in a more suitable form, as a function of pulse discrete
autocorrelation function g = (g−L+1, . . . , gL−1), as follows
[11]

β(g, w) =
L∑

l=−L

2glw × sinc(2πw), (5)

where sinc(x) = sin(x)/x, and

gl =

∫ ∞

−∞
h(t)h⋆(t− lT )dt. (6)

Direct maximization of AIR, for a given discrete modulation
set is infeasible as, to the best of our knowledge, a closed form
expression does not exist. Instead, it is common to optimize
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Fig. 1: Impulse (a) and (b) frequency responses of designed filters for w = 0.3 and w = 0.45 (L = 50, β = 0.999).

an information rate upper bound C(b), derived assuming
Gaussian sample distribution [17]

C(b) =

∫ 1/2

0

log2

[
1 +

2Es|B(f)|2

N0T

]
df, (7)

where B(f) =
∑L−1

k=0 bke
i2πkf represents Fourier transform

of the vector b.
It was reported in [11] that in large number of cases C(b)

monotonically increases with actual AIR obtained through
computationally hungry Monte Carlo simulation, which means
that optimizing C(b) is meaningful.

By studying typical behavior of pulses optimized by (7),
for a fixed β and w constraints we noticed the following:
i) relatively small number of filter taps is sufficient to
obey strict b constraint (for example β = 0.999) and ii)
significant portions of energy of the pulse autocorrelation are
spread across a large number of taps, i.e., the account of
introduced ISI is large. Obviously, such pulses cannot be used
in systems that do not use equalizers, and are inadequate when
equalization is performed with the MMSE equalizer, given its
modest ability to suppress ISI.

To resolve the aforementioned issue, we proposed that
additional constraint is added into optimization setup that will
force the optimization procedure to cluster the majority of
the autocorrelation energy to main tap g0 and potentially 2M
adjacent taps (g−M , , g−1, g1, . . . gM ). Namely, we define a
set of thresholds f 0 < fi < 1, 0 ≤ i ≤ M , forcing the
relative energy of central autocorrelation taps to be above the
thresholds. However, given frequency-time duality principle,
clustering autocorelation energy makes it harder to satisfy
frequency domain constraint β. To overcome the problem, the
filter lengths L must be increased.

For predefined normalized bandwidth w, with energy
concentration β0 we formally express the optimization

problem as follows

bopt = argmax
b

C(b)

s.t. β(g, w) = β0,

g2i∑L−1
ℓ=−L+1 g

2
ℓ

≥ f, 0 ≤ i ≤M. (8)

The above optimization problem can be solved similarly as
the related problems described in [17] and [11], by sequential
quadratic programming (SQP) method.

It should be noted that in OBM system described in Section
II, we do not match the receiving filter to transmitting h(t),
which means that amount of ISI collected by the receiver is
not directly expressed by autoccorelation of h(t). However,
we observed strong dependency between ability of MMSE
equalizer to suppress ISI and the energy concentration of the
pulse autocorrelation function.

To illustrate our optimization procedure, we designed two
pulses with β = 0.999, L = 50 and w = 0.3 and w =
0.45, respectively, denoted by F0.3 and F0.45, design to obey
f0 = 0.58 and f0 = 0.85, respectively. Their impulse and
frequency responses are depicted in Fig. 1. For compression
we also give frequency responses of square root raised cosine
(SRRC) pulses with roll-offs equal to 0.1, designed to meet
the same requirements as optimized pulses in terms of length
and energy concentrations in frequency domain (denoted by
SRRC0.3 and SRRC0.45).

IV. NUMERICAL RESULTS

In this section we provide the performance of designed
pulses F0.3 and F0.45, in terms of bit error rate and achievable
information rates, obtained by Monte Carlo simulation
(Figs. 2 and 3). We examine pulses behaviour on OBM
and Ungerboeck system models, introduced in Section II.
Obtained results are compared to SRRC pulses (SRRC0.3

and SRRC0.45). Given the fact that we only consider binary
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Fig. 2: Achievable information rates of designed pulses.
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Fig. 3: Bit error rate achievable by F0.45 filter.

transmission (ak ∈ {±1}), achievable information rates are
calculated numerically as follows

AIR =
1

2

∑
ak=−1,1

∫ +∞

−∞
p(z|ak)× log2

2p(z|ak)
p(z|1) + p(z| − 1)

dz,

(9)

where the conditional probability density function of the
log likelihood ratio z of the symbols that corresponds to
transmitted ak, p(z|ak), is approximated by a histogram.

In Fig. 2 we show that designed pulses outperform SRRC
counterparts in terms of AIR on the both system models.
For example, F0.45 achieves AIR, equal to 0.8 bits/symbols,
with 0.4 dB less Es/N0 value compared to SRRC0.45 on
the OBM, while the differences on the Ungerboeck model
is approximately 1.8 dB. One can also notice that SRRC0.3

cannot achieve information rates above 0.68 bits/symbol in the
OBM, while if F0.3 is used, higher spectral efficiencies are
possible. If we consider uncoded transmission we can, notice
that F0.45 achieves bit error rate of 10−3 with 1.7 dB less
Es/N0 compared to SRRC0.45 on the OBM (Fig. 3).

V. CONCLUSION

This paper provides novel pulse shaping filters applicable to
generalized FTN signaling systems with MMSE equalization
and also to systems with no equalizer employed. We show
that proposed pulses outperform SRRC pulses of the same
structural properties. Our future work will be oriented into
examining finite length coded transmission systems that
employ proposed pulses.

ACKNOWLEDGMENT
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