

Abstract—Code comments have become an increasingly

important kind of software development metadata, due to the

possibilities of automated code comment analysis and generation.

Different downstream tasks inherently prioritize certain kinds of

code comments over others, making it necessary to properly

define and identify different comment classes. In this paper, we

analyze, compare, and systematize previously proposed code

comment classification taxonomies according to their comment

classes and applicability. We also present a new taxonomy

designed for the tasks of semantic code search and semantic text

similarity, and we contrast it to the existing approaches.

Index Terms—code comments; code comment taxonomy;

comparison of classification taxonomies.

I. INTRODUCTION

Code comments represent an invaluable source of metadata

regarding software implementation. They describe code

functionalities and algorithmic specifics, provide usage

instructions, point towards additional resources, denote

potential or observed programming bugs and issues, etc. In

short, code comments play a vital role in helping developers

comprehend source code [1]. In this manner, code comments

greatly increase code maintainability, particularly when

dealing with large software projects and development teams.

Depending on the downstream task in focus, not all code

comments are of equal importance. For instance, if one wishes

to compare the functionality of two methods, comments

which provide authorship information are of little

consequence, whereas those describing program

implementation are of much greater significance. However,

distinct kinds of code comments can be difficult to

distinguish, particularly when no clear keywords for each

comment type exists. A further complication in identifying

relevant comments is the fact that a standardized code

comment taxonomy does not exist. Instead, multiple different

code comment categorization solutions have been proposed so

far, most often designed with a specific programming

language and downstream task in mind.

In this paper, we first present a survey of the existing code

Marija Kostić is with the School of Electrical Engineering and the

Innovation center of School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

marija.kostic@ic.etf.bg.ac.rs), (https://orcid.org/0000-0003-4923-3748).

Aleksa Srbljanović is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,

Serbia, (e-mail: aleksa.srbljanovic@etf.bg.ac.rs).

Vuk Batanović is with the Innovation center of School of Electrical

Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020

Belgrade Serbia, (e-mail: vuk.batanovic@ic.etf.bg.ac.rs), (https://orcid.org/

0000-0003-2639-9091).

Boško Nikolić is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia, (e-mail:

bosko.nikolic@etf.bg.ac.rs), (https://orcid.org/ 0000-0003-1142-9243).

comment taxonomies and their applications in downstream

tasks. Afterward, we present a new comment classification

schema suitable for the tasks of semantic code search and

semantic textual similarity and applicable to various

programming languages. We then compare our approach with

previous code comment taxonomies and conclude with some

pointers regarding the future use of our comment schema.

II. A SURVEY OF EXISTING TAXONOMIES

In this section, we review existing code comment

classification taxonomies and describe how those systems

were applied to specific tasks. A similar, but much shorter

survey of this kind was previously presented within [2].

Zhai et al. [3] wanted to leverage program analysis to

systematically propagate comments, so that they can be

passed on to uncommented code entities and help detect bugs.

A bi-directional analysis was designed where: (1) program

analysis propagates and updates code comments, and (2)

comments provide additional semantic hints to enrich

program analysis. For effective propagation, it was vital to

understand what kind of information comments convey and to

which code elements they refer to, as comments of different

categories require different propagation rules. The authors

introduced a code comment taxonomy in which there are two

dimensions of interest: code entity and content perspective.

Code entities commonly commented on are class, method,

statement, and variable. As for the content perspective, five of

them were identified: 1) what – a definition or a summary of

the code entity’s functionality; 2) why – the reason why the

code entity is provided or its design rationale; 3) how-it-is-

done – description of the implementation details; 4) property

– properties of the entities such as pre-condition and post-

conditions; 5) how-to-use – description of the usage, expected

set-up, or the environment of the entity. A set of 5,000

comments from four popular Java libraries were classified at

the sentence level. The agreement between two coders,

measured using Cohen’s Kappa metric [4], was 0.826.

Chen et al. [1] investigated the use of the relationship

between code blocks and the categories of the corresponding

comments to improve code summarization, where the aim is

to automatically generate a code comment based on the given

block of source code. They showed that a composite

approach, where the most suitable summarization model is

selected based on the comment category, outperforms other

approaches. Comments were classified into six categories –

what, why, how-to-use, how-it-is-done, property and others.

Five of them are the same as categories of content perspective

in [3], while the sixth one, named others, covers unspecified

or ambiguous comments. For this task, 20,000 Java methods

and their corresponding comments were manually classified.

Code Comment Classification Taxonomies

Marija Kostić, Aleksa Srbljanović, Vuk Batanović and Boško Nikolić, Member, IEEE

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 1 of 6 ISBN 978-86-7466-930-3

https://orcid.org/1234-1234-1234-123X

The overall agreement of the three annotators, expressed in

the terms of Fleiss’ Kappa score [5], is 0.79.

Padioleau et al. [6] studied code comments to understand

developers’ needs regarding the creation of new tools and

languages or the improvement of the existing ones. Comments

were classified along four dimensions according to the

question of interest: 1) What? – content: What is in the

comment? Does it contain useful information? Its categories

type, interface, code relationship and pastFuture and

subcategories are closely related to the specific usage of the C

programming language for operating systems; 2) Who? –

people involved: Who or which tool can benefit from a

comment? Who is the comment author?; 3) Where? – code

entity: Where in a file is a comment located?; 4) When? –

time: When was a comment written? How did the comment

evolve over time? The authors considered 1050 comments

randomly sampled from the code of three operating systems

written in the C programming language: Linux, FreeBSD and

OpenSolaris. The What? and Who? dimensions were

manually annotated for each comment, while the other two

dimensions were labeled automatically.

Haouari et al. [7] investigated developers’ commenting

habits via an empirical study. For the quantitative aspect of

the study, the authors determined the distribution of the

comments with respect to the program construct type that

follows it. This allowed them to see what program construct

types are documented more often than others. Some of the

observed constructs are package declaration, import

declaration, class declaration, method, constructor, for,

while, etc. For the qualitative aspect of the study a new

comment taxonomy was designed. This taxonomy has four

high-level dimensions: 1) Object of the comment which can be

a single subsequent instruction (follow); the following block

of instructions (block), no code in the vicinity (nocode), or

any other situation (other); 2) Comment type which can be the

description of the code functionality (explanation), future task

to be completed like TODO items (working), old code that is

commented out instead of being removed (code), or any other

comments (other); 3) Style dimension is only observed in the

case of explanatory comments (type=explanation) and can be

either explicit or implicit; 4) Quality dimension is also specific

only to explanatory comments. It involves three categories:

fair+ where comments describe functionalities of related code

and give other information; fair where code functionality is

adequately described; and poor where some or none of the

functionality is described. Analysis for the quantitative aspect

was fully automated and applied to all comments within three

open-source Java projects. For the qualitative aspect, the

authors had 49 developers manually classify 407 comments.

Steidl et al. [8] developed a model for comment quality

analysis with four criteria (coherence, usefulness, consistency,

and completeness). Their comment taxonomy consists of

seven high-level categories: 1) copyright – copyright or

license; 2) header – overview of the class functionality; 3)

member – functionality of a method/field; 4) inline –

implementation decisions within a method body; 5) section –

group of methods/fields that belong to the same functional

aspect; 6) code – commented out code; 7) task – developer

notes with a remaining todo, a bug, or an implementation

hack. Authors created a training set by classifying 830 Java

and 500 C++ comments from twelve open-source projects.

Pascarella et al. [9]–[11] focused on increasing the

empirical understanding of the types of comments that

developers write in source code. After an iterative process of

analyzing code files, the authors defined a fine-grained

hierarchical taxonomy with two layers: the outer one

consisting of six top-level categories (purpose, notice, under

development, style & IDE, metadata, and discarded) and the

inner one consisting of 16 subcategories. The purpose

category contains comments that describe the functionality of

the related source code. Its three subcategories summary,

expand, and rationale respond to the question words what,

how, and why, similarly to the categories in [1], [3]. The

notice category covers comments about warnings, alerts,

messages, or functionalities that should be used with care. Its

subcategories are deprecation, usage, and exception.

Subcategories todo (explicit actions to be done), incomplete

(partial or empty comment bodies), and commented code

belong to the under development top-level category. The style

& IDE comments are used for communication with the IDE

(directive) and logical separation of the code (formatter). The

metadata comments define meta information about the code

such as license, terms of use, authors, links to external

resources (subcategories license, ownership, and pointer). All

other comments that do not fit in the previous categories

belong to the discarded category (subcategories automatically

generated and unknown). Authors decided to classify

comments at the character level. That means that annotators

had to specify the starting and the ending character of each

comment block and its category. After this process, it was

found that in only 4% of cases one line had to be classified

into more than one category. The study was conducted on

more than 6,000 source code files with more than 40,000 lines

of Java comments in open source and industrial software

projects. To validate the proposed taxonomy, three developers

were asked to manually classify 138 lines of comments in

three Java source code files. They achieved a Fleiss’ Kappa

value of 0.9.

Unlike previously mentioned efforts, Shinyama et al. [12]

worked only on comments inside functions or methods that

explain code at the microscopic level i.e., on local comments.

These comments are not visible in the documentation and

often give insight into developers’ minds. They are often

crucial for understanding nontrivial parts of the code. As there

usually is a relationship between a comment and the code it

describes, the authors represented that relationship as an arc

with three elements: (1) source – the comment itself; (2)

destination – target code; and (3) type of relationship –

comment category. They independently made a list of

categories suitable for local comments: 1) postcondition –

conditions that hold after the code is executed, typically used

to explain what the code does; 2) precondition – conditions

that hold before the code is executed, typically used for

explaining why the code is needed; 3) value description – a

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 2 of 6 ISBN 978-86-7466-930-3

phrase that can be equated with a variable, constant or

expression; 4) instruction – instructions for code maintainers

(todo comments); 5) guide – guides and examples for code

users; 6) interface – description of a function, type, class, or

interface; 7) meta information – author, date, or copyright; 8)

comment out – commented out code; 9) directive – compiler

directives that are not directed to human readers; 10) visual

cues – comments inserted just for the ease of reading; 11)

uncategorized – all other comments. For each arc element, a

statistical classifier was built and trained on 1,000 manually

classified Java comments. Classifiers were applied on large

corpora of Java and Python comments. Annotation agreement

was measured on a separate set of 100 Java comment-code

pairs and reached Fleiss’ Kappa value of 0.491.

Zhang et al. [13] used supervised learning to automatically

classify Python code comments. Since most of the related

work is based on Java and C/C++ programming languages,

the authors conducted an iterative content analysis session to

devise a Python-specific classification taxonomy. Their

taxonomy contains 11 categories: 1) metadata – license and

copyright; 2) summary – description of the functionality of the

related code; 3) usage – explanations on how to use the code

that can contain examples; 4) parameters – explanations of

function parameters; 5) expand – detailed explanations of the

purpose of a small block of code, usually inline comments; 6)

version – library version information; 7) development notes –

comments for developers concerning ongoing work,

temporary tips, explanations of functions etc.; 8) todo –

explicit actions to be done in the future like bug fixing or

feature improving; 9) exception – indications that a function

throws exceptions or suggestions how to prevent unwanted

behaviors; 10) links – links to external resources; 11) noise –

meaningless symbols which may be used for separation. The

training set consisted of 330 annotated comments from seven

popular Python open-source projects on GitHub.

III. A NEW CODE COMMENT TAXONOMY

We explored code comment classification taxonomies in

order to differentiate between different kinds of comments for

the tasks of semantic code search and cross-level sematic

textual similarity. In semantic code search (SCS), the goal is

to construct a system which returns the most relevant code

block(s) from a software repository for a given query in a

natural language. To do so, most models rely on the

accompanying code comments which describe the

functionality of their respective code blocks [14]. Cross-level

semantic similarity (CLSS) is the task in which a

computational model ought to return a numerical semantic

similarity score for a given pair of texts written in a natural

language, where the length of the texts can be dissimilar (e.g.,

one text is a paragraph, the other is a sentence) [15]–[16].

Solving CLSS is of great use for semantic code search, since

SCS implies finding semantic links between texts of different

lengths – queries are usually limited to a couple of words or a

sentence, whereas the length of code comments can range

from a phrase to a paragraph. Obviously, these tasks are not

limited to a particular programming or natural language.

We found that no previous code comment taxonomy was

designed with these two downstream tasks in mind, so it was

necessary to consider the previous classification systems and

devise a suitable set of comment categories. Furthermore, we

wanted to create a classification taxonomy that would be

applicable to various programming languages, including C,

C++, C#, Java, JavaScript/TypeScript, PHP, Python, and

SQL. Upon reviewing the papers presented in the previous

section, we decided to develop our own taxonomy using the

approaches of Pascarella et al. [9]–[11] and Steidl et al. [8] as

a starting point. This choice was based on the emphasis these

works placed on the comments that describe code

functionality, since such comments are the most relevant ones

for SCS. We therefore distinguish between functional and

non-functional comments via two top-level categories. These

two categories are then subdivided into eight subcategories. In

the remainder of this section, we will present the definition

and scope of each of them.

A. Functional

The Functional category contains comments that describe

the functionality of the corresponding source code.

Descriptions can be short, or they can extend over multiple

lines. These comments are usually written in a natural

language and are used to describe the purpose, behavior, or

the reason why something is implemented in a particular way.

They can respond to questions What?, Why?, and How?. We

do not distinguish between these aspects of functionality

because all of them are relevant for the SCS task. However,

we do differentiate between three subcategories based on the

type of the corresponding source code: 1) Functional-Module

comments describe the functionality of a particular module

like a class or an interface. If a programming language does

not use the object-oriented paradigm, these comments pertain

to entire files or scripts; 2) Functional-Method comments

describe the functionality of a function or a method. They are

usually located above or at the beginning of a

function/method definition or declaration; 3) Functional-

Inline are all the other comments that describe some

functionality. They can describe the functionality of a variable

or an expression and can be located inside a method body.

B. Non-Functional

The Non-Functional category covers all comments that do

not describe code functionality. Subcategories in this top-level

category are not relevant for the SCS and CLSS tasks, but we

still decided to include them because we wanted to make the

annotated datasets usable for other downstream tasks as well.

We distinguish between the following five subcategories: 1)

The Notice category encompasses warnings, alerts, and

messages intended for other developers or users of the source

code. It also covers information about deprecated artifacts and

instructions about alternative methods or classes that should

be used. Comments that explain something is implemented in

a certain way because of a bug, or a known issue, also belong

to this category. Finally, examples or explicit suggestions how

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 3 of 6 ISBN 978-86-7466-930-3

to use a functionality are classified as Notice comments as

well; 2) General comments usually define meta-information

about the code such as license, copyright, authorship,

module/class version, timestamps, the name or path of the file,

information about the libraries used in the source code, etc.

These comments are usually located at the top of the file; 3)

The Code category is composed of comments that contain

source code that is commented out by developers. This is

usually done during testing or debugging. This code may

represent new or hidden features, work in progress, features

being tested, temporarily removed code or older variants of

the code; 4) IDE comments are used for communication with

the IDE or the compiler to change their default behavior.

Comment content is usually of limited value to human

TABLE 1 CLASSIFICATION OF EXAMPLE CODE COMMENTS ACCORDING TO DIFFERENT TAXONOMIES

O
u

r

p
r
o

p
o

sa
l

F
u

n
ct

io
n

al

F
u

n
ct

io
n

al
-

m
o

d
u

le

F
u

n
ct

io
n

al
-

m
et

h
o

d

F
u

n
ct

io
n

al
-

in
li

n
e

F
u

n
ct

io
n

al
-

in
li

n
e

N
o

ti
ce

F
u

n
ct

io
n

al
-

m
et

h
o

d

N
o

ti
ce

T
o

d
o

C
o

d
e

G
en

er
al

ID
E

N
o

ti
ce

C
h

e
n

 [
1

]

W
h

at

W
h

y

H
o

w
-i

t-
is

-

d
o

n
e

P
ro

p
er

ty

W
h

at
|W

h
y

H
o

w
-i

t-
is

-

d
o

n
e|

P
ro

p
er

ty

O
th

er
s

H
o

w
-t

o
-

u
se

O
th

er
s

Z
h

a
i

[3
]

W
h

at

W
h

y

H
o

w
-i

t-
is

-

d
o

n
e

P
ro

p
er

ty

C
la

ss

M
et

h
o

d

S
ta

te
m

en
t

V
ar

ia
b

le

- - -

H
o

w
-t

o
-

u
se

- - - - - - - - - - -

P
a

sc
a

r
e
ll

a
 [

1
1

]

S
u

m
m

ar
y

R
at

io
n

al
e

E
x

p
an

d

-

P
u

rp
o

se

F
o

rm
at

te
r

A
u

to
m

at
ic

al
ly

g
en

er
at

ed

T
o

d
o

U
sa

g
e

D
ep

re
ca

ti
o

n

E
x

ce
p

ti
o

n

P
o

in
te

r

T
o

d
o

C
o

m
m

en
te

d

co
d

e

O
w

n
er

sh
ip

L
ic

en
se

U
n

k
n

o
w

n

D
ir

ec
ti

v
e

U
n

k
n

o
w

n

Z
h

a
n

g
 [

1
3

]

S
u

m
m

ar
y

-

E
x

p
an

d

-

S
u

m
m

ar
y

S
u

m
m

ar
y

|

p
ar

am
et

er
s

E
x

p
an

d

-

N
o

is
e

D
ev

el
o

p
m

en
t

n
o

te
s

U
sa

g
e

D
ev

el
o

p
m

en
t

n
o

te
s

E
x

ce
p

ti
o

n

L
in

k
s

D
ev

el
o

p
m

en
t

n
o

te
s

T
o

d
o

N
o

is
e

M
et

ad
at

a

V
er

si
o

n

-

N
o

is
e

S
h

in
y

a
m

a
 [

1
2

]

P
o

st
co

n
d

it
io

n

P
re

co
n

d
it

io
n

U
n

ca
te

g
o

ri
ze

d

In
te

rf
ac

e

(P
o

st
|p

re
)

co
n

d
it

io
n

V
al

u
e

d
es

cr
ip

ti
o

n

V
is

u
al

 c
u

e

U
n

ca
te

g
o

ri
ze

d

G
u

id
e

In
st

ru
ct

io
n

C
o

m
m

en
te

d

o
u

t

M
et

a

in
fo

rm
at

io
n

U
n

ca
te

g
o

ri
ze

d

D
ir

ec
ti

v
e

U
n

ca
te

g
o

ri
ze

d

S
te

id
l

[8
]

H
ea

d
er

|

In
li

n
e|

M
em

b
er

H
ea

d
er

M
em

b
er

In
li

n
e

M
em

b
er

S
ec

ti
o

n

-

T
as

k

- - - -

T
as

k

C
o

d
e

H
ea

d
er

C
o

p
y

ri
g

h
t

H
ea

d
er

- -

H
a

o
u

a
r
i

[7
]

T
y

p
e
-

E
x

p
la

n
at

io
n

T
y

p
e
-O

th
er

T
y

p
e
-

W
o

rk
in

g

T
y

p
e
-C

o
d

e

T
y

p
e
-o

th
er

E
x

a
m

p
le

P
u
s
h
e
s

a
n

i
t
e
m

o
n
t
o

t
h
e

t
o
p

o
f

t
h
i
s

s
t
a
c
k

.
[3

]

I
t

e
l
i
m
i
n
a
t
e
s

t
h
e

n
e
e
d

f
o
r

e
x
p
l
i
c
i
t

r
a
n
g
e

o
p
e
r
a
t
i
o
n
s
.

 [
3

]

S
h
i
f
t
s

a
n
y

s
u
b
s
e
q
u
e
n
t

e
l
e
m
e
n
t
s

t
o

t
h
e

l
e
f
t
.

 [
3

]

T
h
e

i
n
d
e
x

m
u
s
t

b
e

a

v
a
l
u
e

g
r
e
a
t
e
r

t
h
a
n

o
r

e
q
u
a
l

t
o

0
.

 [
3

]

T
h
i
s

c
l
a
s
s

i
s

a

m
e
m
b
e
r

o
f

t
h
e

J
a
v
a

C
o
l
l
e
c
t
i
o
n
s

F
r
a
m
e
w
o
r
k
.

 [
3

]

C
h
e
c
k

f
o
r

s
y
m
m
e
t
r
y
,

t
h
e
n

c
o
n
s
t
r
u
c
t

t
h
e

e
i
g
e
n
v
a
l
u
e

d
e
c
o
m
p
o
s
i
t
i
o
n

@
p
a
r
a
m

A

s
q
u
a
r
e

m
a
t
r
i
x

 [
8

]

I
n
c
r
e
m
e
n
t

t
h
i
s

w
h
e
n

t
h
e
r
e
'
s

a

c
h
a
n
g
e

r
e
q
u
i
r
i
n
g

c
a
c
h
e
s

t
o

b
e

i
n
v
a
l
i
d
a
t
e
d
.

T
h
e

n
u
m
b
e
r

o
f

c
h
a
r
a
c
t
e
r
s

t
o

s
k
i
p
.

 [
3

]

-
-
-

G
e
t
t
e
r

a
n
d

S
e
t
t
e
r

M
e
t
h
o
d
s

-
-
-

 [
8

]

C
O
L
O
R
C
O
R
R
E
C
T
I
O
N
_
H
P
P

C
a
u
t
i
o
n
:

s
e
t
t
i
n
g

a

n
e
w

s
e
r
v
i
c
e

m
a
n
a
g
e
r

s
t
u
b

w
o
n
’
t

r
e
p
l
a
c
e

t
h
e

e
x
i
s
t
i
n
g

o
n
e

 [
7

]
E
x
a
m
p
l
e
:

r
e
n
d
e
r
T
e
x
t
(
1
0
0
,

1
0
0
,

F
O
N
T
,

1
2
,

"
H
e
l
l
o
"
)
;

 [
1

2
]

D
E
P
R
E
C
A
T
E
D
:

t
h
e

f
o
l
l
o
w
i
n
g

p
r
o
p
e
r
t
y

i
s

n
o

l
o
n
g
e
r

i
n

u
s
e
,

b
u
t

d
e
f
i
n
e
d

u
n
t
i
l

2
.
0

t
o

p
r
e
v
e
n
t

c
o
n
f
l
i
c
t
s

@
t
h
r
o
w
s

T
r
a
n
s
p
o
r
t
E
x
c
e
p
t
i
o
n
I
n
t
e
r
f
a
c
e

W
h
e
n

a
n

u
n
s
u
p
p
o
r
t
e
d

o
p
t
i
o
n

i
s

p
a
s
s
e
d

S
e
e

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
s
y
m
f
o
n
y

/
s
y
m
f
o
n
y
/
p
u
l
l
/
5
5
8
2

S
k
i
p

d
u
e

t
o

c
r
a
s
h

b
u
g
:

h
t
t
p
s
:
/
/
s
u
p
p
o
r
t
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
e
n
-

u
s
/
h
e
l
p
/
2
9
0
8
0
8
7

T
O
D
O
:

C
h
e
c
k

s
y
n
c
h
r
o
n
i
z
a
t
i
o
n
.

 [
7

]

_
m
a
i
n
F
r
a
m
e
.
h
o
u
r
g
l
a
s
s
O
f
f
(
)
;

 [
7

]

@
a
u
t
h
o
r

B
e
n

R
a
m
s
e
y

<
b
e
n
@
b
e
n
r
a
m
s
e
y
.
c
o
m
>

C
o
p
y
r
i
g
h
t
(
c
)

2
0
1
9

I
n
t
e
l

C
o
r
p
o
r
a
t
i
o
n
.

@
v
e
r
s
i
o
n

$
R
e
v
i
s
i
o
n
:

1
.
0

C
H
E
C
K
S
T
Y
L
E
:
O
F
F

 [
1

2
]

T
h
e

i
m
p
l
e
m
e
n
t
a
t
i
o
n

i
s

a
w
e
s
o
m
e
.

 [
1

]

C
la

ss

W
h

at

W
h

y

H
o

w

P
ro

p
er

ty

M
o

d
u

le

M
et

h
o

d

In
li

n
e

V
ar

ia
b

le
/

F
ie

ld

S
ec

ti
o

n

A
u

to
m

at
ic

al
ly

G
en

er
at

ed

N
o

te
s

U
sa

g
e

D
ep

re
ca

ti
o

n

E
x

ce
p

ti
o

n

L
in

k

B
u

g

T
o

d
o

C
o

d
e

O
w

n
er

sh
ip

M
et

a

V
er

si
o

n

ID
E

O
th

er

C
la

ss

F
u

n
ct

io
n

al
it

y

b
y

 t
y

p
e

F
u

n
ct

io
n

al
it

y

b
y

 p
o

si
ti

o
n

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 4 of 6 ISBN 978-86-7466-930-3

readers; 5) The Todo category covers explicit tasks to be done

and notes about bugs that need to be fixed.

IV. COMPARISON WITH PREVIOUS CODE COMMENT

CLASSIFICATION TAXONOMIES

In this section, we present a comparison between the

previously described taxonomies. Table 1 shows examples of

code comments and their classes according to different

taxonomies. In places where we were not sure what category

the authors would choose for a specific comment, we put a

dash symbol. Comments in italic are new examples, while

others are taken from the cited papers. We have omitted the

taxonomy presented in [6] from the table since it is extremely

specific regarding the type of code it is applied to (operating

systems code). Additionally, its authors have not disclosed all

the categories they have devised.

All the comments which describe code functionality belong

to one of the following classes - What, Why, How, Property,

Module, Method, Inline and Variable/Field. However, these

classes can be classified based on two perspectives: (1)

according to the type of the commented functionality –

categories What, Why, How, and Property, or (2) the

comment’s structural position within the code – categories

Module, Method, Inline, Variable/Field. Depending on the

downstream task, some taxonomies use the functionality type

classification [1], [13], others use the comment place

classification [8], some use both [3], [12], or neither [7]. The

new taxonomy we propose takes into account the placement

of a comment within the code. It should be emphasized we do

not differentiate between Inline and Variable/Field functional

comments like in some taxonomies [3], [8], [12], but rather

group them together under the Functional-Inline class.

In some papers there is a separate class for comments

which visually divide the code into sections [8], [11]–[12].

We classify such comments as Functional-Inline as well.

Some comments do not describe code functionality, but

rather contain notes to developers and code users. Several

different classes for these kinds of comments have been

previously proposed. There are authors [1], [3], [7]–[8] who

recognize only some of these comments because not all of

them are relevant for their downstream task. In other papers

[11]–[13] most of these comments are recognized, but every

paper uses a different approach concerning their classification.

Some authors [11], [13] use a higher level of granularity while

others [12] perceive some or all such comments as one class.

In [12] the authors also differentiate between the comments

meant for developers and those meant for users. Regarding

TODO comments, some taxonomies [12]–[13] clearly

separate them from the other comments, while in others [8],

[11] there is an overlap between TODO and other comment

categories. Our taxonomy distinguishes between Notice and

Todo classes. All the notes for developers/users, use cases,

warnings about deprecation, exceptions and links are

classified as Notice. Messages about missing/unfinished parts

of code and bugs are classified as TODO.

Several taxonomies [7]–[8], [11]–[12], treat comments

which represent parts of code as a separate class, while others

do not mention them. In [11], code which is commented out is

classified as a Todo comment, along with comments for bugs

and unfinished code. In our taxonomy parts of code which are

commented out are placed in a separate class – Code.

Most previous approaches use a separate class for meta-

information comments. Some [8], [11], [13] utilize a more

granular classification according to license information,

authorship, version information etc. In our approach all the

meta-information is classified into the General category.

A few authors [11]–[12] have proposed a separate class for

comments which represent some instructions for the compiler

or the development environment. We also include an IDE

category in our taxonomy.

Some papers [1], [7], [11]–[13] use a separate category for

all other comments which are not of interest. However, our

taxonomy does not employ such a category, because we do

not want to allow annotators to easily dismiss ambiguous

comments which are difficult to categorize.

Additional information about the presented comment

taxonomies is shown in Table 2. It contains the number of

comments that are/will be annotated for each taxonomy, the

used comment granularity, the natural and programing

languages each taxonomy is applied to, the annotation

agreement (if reported), and the downstream task. Data from

the table shows that annotations are typically done on small

sets of code comments written in English, and that comments

are taken from one or two programming languages at most. It

is hard to compare annotation agreements because agreement

measures differ from paper to paper and relate to different

numbers of annotators and different comment set sizes.

Some of the earliest taxonomies were specific for the task

they were solving [6]–[7] and observed more than two

perspectives (e.g., object, style, beneficiary etc.). Because of

their complexity, they are not useful for tasks other than the

ones they were designed for. But, over time, two perspectives

became prominent: (1) what is the entity of a comment, and

(2) how a comment describes the functionality of the entity.

All papers in this survey worked with comments in English

and in one of the following programming languages: C/C++,

Java, or Python. As mentioned in [11] many object-oriented

languages have very similar functionalities, and it is

reasonable to expect that their comments will behave the

same. We can see that in more recent works [1], [3], [8], [11]–

[13] taxonomies designed for Java, Python, and C++ are

similar. For other programming paradigms (e.g., functional),

further research must be done.

Although some authors wanted only to empirically study

and understand the types of code comments [11]–[13], most

of the times classification was done as a first step in solving a

particular downstream task. In a couple of papers, it is shown

that that kind of approach is fruitful. For example, Chen et al.

[1] have found that different summarization models work best

for different categories of comments. By including comment

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 5 of 6 ISBN 978-86-7466-930-3

TABLE 2 GENERAL INFORMATION ABOUT CODE COMMENT CLASSIFICATION TAXONOMIES

Paper Year
Number of

comments
Granularity Language Programming Languages

Annotation

Agreement
Downstream task applicability

Padioleau

[6]
2009 1050 Comment English C -

Understanding developers’ needs regarding the

creation or improvement of tools and languages.

Haouari

[7]
2011 407 Comment English Java - Investigation of developers commenting habits.

Steidl [3] 2013 1330 Comment English Java, C++ - Quality analysis of source code comments.

Shinyama

[12]
2018 1000 Comment English Java, Python

Fleiss' Kappa =

0.491

Analysis of comments inside functions or methods

that often give insight into the developers’ minds.

Zhang

[13]
2018 330 Comment English Python - Classification of Python code comments.

Pascarella

[11]
2019 40000 Character English Java

Fleiss' Kappa =

0.9

Increasing the empirical understanding of the types

of comments that developers write.

Zhai [3] 2020 5000 Sentence English Java
Cohen’s Kappa

= 0.826
Code-comment propagation.

Chen [1] 2021 20000 Comment English Java
Fleiss' Kappa =

0.79
Code summarization.

Our

proposal
2022 ~10000 Character English

C/C++, C#, Java, JavaScript/

TypeScript, PHP, Python, SQL

To be

determined

Semantic code search and cross-level semantic

textual similarity.

classification, they were able to design a composite

summarization model that outperforms a standard approach

where one model is applied to all comments. Another example

is the work of Zhai et al. [3] focused on code comment

propagation. Here, comment classification was necessary

because comments with different content related to different

programming entities cannot be propagated in the same way.

V. CONCLUSION

In this paper, we have analyzed and compared previously

proposed code comment classification taxonomies. We have

systematized them according to the comment classes they use

as well as according to their applicability to different

programming languages and downstream tasks. We have also

presented a new comment taxonomy, designed for the tasks of

semantic code search and semantic textual similarity,

applicable to various programming languages.

In order to validate the usefulness of our taxonomy, we are

currently engaged in the creation of a code comment corpus

which will encompass around 10,000 comments written in

English or Serbian, and taken from a spectrum of

programming languages(C/C++, C#, Java, PHP, Python, SQL,

and JavaScript/TypeScript). We aim to manually annotate this

corpus using the proposed taxonomy and use it to enable

automated comment classification, both as a stand-alone task

and as a first step within the mentioned downstream tasks.

ACKNOWLEDGMENT

This work was supported by the Science Fund of the

Republic of Serbia, grant no. 6526093, AI-AVANTES.

REFERENCES

[1] Q. Chen, X. Xia, H. Hu, D. Lo, S. Li, “Why My Code Summarization

Model Does Not Work: Code Comment Improvement with Category

Prediction,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2, pp. 1-29,

Feb 2021.

[2] B. Yang, Z. Liping, Z. Fengrong, “A Survey on Research of Code

Comment,” Proc. 2019 3rd International Conference on Management

Engineering, Software Engineering, and Service Sciences-ICMSS 2019,

Wuhan, China, pp. 45-51, Jan. 12, 2019.

[3] J. Zhai, X. Xu, Y. Shi, G. Tao, M. Pan, S. Ma, L. Xu, W. Zhang, L. Tan,

X. Zhang, “CPC: automatically classifying and propagating natural

language comments via program analysis,” Proc. ACM/IEEE 42nd

International Conference on Software Engineering, Seoul, South Korea,

pp. 1359-1371, Oct. 1, 2020.

[4] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37-46, 1960.

[5] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”

Psychological Bulletin, vol. 76, no. 5, pp. 378-382, 1971.

[6] Y. Padioleau, L. Tan, Y. Zhou, “Listening to programmers —

Taxonomies and characteristics of comments in operating system code,”

Proc. 2009 IEEE 31st International Conference on Software

Engineering, Vancouver, Canada, pp. 331-341, May 16-24, 2019.

[7] D. Haouari, H. Sahraoui, P. Langlais, “How Good is Your Comment? A

Study of Comments in Java Programs,” Proc. 2011 International

Symposium on Empirical Software Engineering and Measurement,

Banff, Canada, pp. 137-146, Sept. 22-23, 2011.

[8] D. Steidl, B. Hummer, E. Juergens, “Quality analysis of source code

comments,” Proc. 2013 21st International Conference on Program

Comprehension, San Francisco, USA, pp. 83-92, May 20-21, 2013.

[9] L. Pascarella, “Classifying code comments in Java mobile applications,”

Proc. 2018 IEEE/ACM 5th International Conference on Mobile

Software Engineering and Systems, Gothenburg, Sweden, pp. 39-40,

May 27-June 3, 2018.

[10] L. Pascarella, A. Bacchelli, “Classifying Code Comments in Java Open-

Source Software Systems,” Proc. 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories, Buenos Aires, Argentina,

pp. 227-237, May 20-21, 2017.

[11] L. Pascarella, M. Bruntink, A. Bacchelli, “Classifying code comments

in Java software systems,” Empirical Software Engineering, vol. 24, no.

3, pp. 1499-1537, Jun 2019.

[12] Y. Shinyama, Y. Arahori, K. Gondow, “Analyzing Code Comments to

Boost Program Comprehension,” Proc. 2018 25th Asia-Pacific Software

Engineering Conference , Nara, Japan, pp. 325-334, Dec. 4-7, 2018.

[13] J. Zhang, L. Xu, Y. Li, “Classifying Python Code Comments Based on

Supervised Learning,” Proc. 2018 15th International Conference on

Web Information Systems and Applications (WISA), Taiyuan, China,

pp. 39-47, Sept. 14-15, 2018.

[14] H. Husain, H.-H. Wu, T. Gazit, G. Miltiadis, A. M. Brockschmidt,

“CodeSearchNet Challenge Evaluating the State of Semantic Code

Search,” Accessed: Dec. 29, 2021. [Online]. Available:

https://github.com/github/CodeSearchNet.

[15] D. Jurgens, M. T. Pilehvar, R. Navigli, “SemEval-2014 Task 3: Cross-

Level Semantic Similarity,” Accessed: Dec. 29, 2021. [Online].

Available: http://alt.qcri.

[16] D. Jurgens, M. T. Pilehvar, R. Navigli, “Cross level semantic similarity:

an evaluation framework for universal measures of similarity,”

Language Resources and Evaluation, vol. 50, no. 1, pp. 5-33, Mar 2016.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 VII1.1 - Page 6 of 6 ISBN 978-86-7466-930-3

