


Abstract—With the expansion of blockchain technologies in

different areas from health care to voting systems and emerging

demand on video content delivery platforms, it is interesting to

investigate possibilities to combine those two into a new system

that will help digital content availability. We present and discuss

relevant work in the industry. Paper proposes one solution for

subscription rights management using blockchain technologies.

Proof of concept is done using the Ethereum blockchain

ecosystem for a video-on-demand service. A similar approach

could be used in other fields of DTV services, like cable TV

subscription services.

Index Terms—subscription management, blockchain, smart

contracts, Ethereum, DTV content subscription, Android TV,

solidity, web3j.

I. INTRODUCTION

Blockchain is a growing list of records linked to the use of

the cryptocurrency method. After the sudden expansion of

Bitcoin [1], it became clear that the potential of blockchain is

a lot greater than its use for money. This technology’s

decentralized system is fertile ground for many ideas and

provides a new approach and opportunities [2]. There are

ideas like a voting system for elections, where vote theft and

rigging of results could not occur, and many other ideas, each

of which aims to improve the current system, which has its

virtues and many flaws. The system’s main problem with the

central authority, with a central database, is that such systems

have one critical point - the system’s bottleneck, which, if

endangered, puts the whole system in danger.
Ethereum is a platform that works on top of blockchain

technology which has revolutionized this field. It is a platform

that allows its users to develop their decentralized applications

[3]. It also resolves one additional issue in such networks:

they cannot function without many users - nodes - who work

on them.
Buying and renting multimedia content is the default

functionality on all TVs, most often as Video On Demand

(VOD), where users temporarily purchase rights to view a

movie or series. With increased online shopping abilities, new

options come to mind. What if a user can sell its rights to

another user? Does it always have to be between the content

provider and the end-user? In the real world, there are second-

hand shops for used goods. Why don’t such digital shops exist

Igor Srdić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Igor.Srdic@rt-tk.com)

Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,
Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi

Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

in the entertainment industry? Blockchain technology may be

the right step towards that. It is reasonable to think that users

would rather sell digital valuables than offer them free to the

public. Some movements are done in that direction with the

appearance of NFT (non-fungible token).
Some work has been done toward decentralized video

streaming platforms using blockchain technologies in work by

Tan et al. [4]. Focus that work was around content creators,

advertisers, and consumers and the availability of the content

in networks based on blockchain. More discussion on the

usability of blockchain smart contracts in the entertainment

industry could be found in the work of Pons [5].

Working consortium grouped around Sony, Samsung, and

Google work on creating a next-generation video

entertainment blockchain. A published white paper [6]

presents the new architecture of the distributed content

delivery network called Theta Mainnet 4.0. They have

anticipated Theta Metachain and Theta Edge Network, as

illustrated in Fig. 1. The first network is distributed

blockchain of blockchains, where the “metachain” name

comes from, resulting in support for an unlimited number of

blockchains. The second network is responsible for interaction

with users. Using publicly available Theta Video API, users

can upload content and request access to content. The network

has endpoints for protected content storage, encoding new

content uploaded, and delivery to the user with an appropriate

NFT-based digital rights management (DRM) system. It is

expected to be available by the end of 2022.

Fig. 1. The architecture of Theta Mainnet 4.0 with Theta Metachain and
Theta Edge Network

One Solution For Multimedia Subscription

Using Blockchain

Igor Srdić, Đorđe Glišić, Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.1 - Page 1 of 4 ISBN 978-86-7466-930-3

In this paper, we are investigating the possibilities of using

blockchain technology in the world of digital television. In

particular, we tried to use the smart contracts concept from the

Ethereum ecosystem to allow users to buy video content from

their homes [7]. Once a transaction is initiated, it takes more

than 10 seconds for the change to be permanently stored in the

blockchain, which is the waiting time for the return values of

these functions. Detailed workflow can be seen in Fig. 2. This

implies that Ethereum applications are not suitable for all

systems that need faster data exchange and cannot correctly

use current blockchain technology.

A smart contract as a programming code cannot be changed

once it enters the blockchain. The mistakes and oversights are

only solvable by creating new smart contracts and redirecting

the applications to new contracts. The main problem is that

errors are discovered only when they happen, and in such a

system, the results of errors are harmful to the user.

Fig. 2. Workflow for a transaction in the Ethereum network

In this work, smart contracts will be used for exchanging

digital currencies for video-on-demand (VOD) services. We

will introduce a digital wallet, an application used for storing

digital funds (for example, cryptocurrency). On the side of the

DTV device, a DTV application will be altered to support

additional payment methods for its video-on-demand service.

Those are the building blocks necessary to complete the task

of creating a subscription management system with

blockchain technology.

The paper consists of three parts. The second section will

present functional requirements. The third section will explain

all technologies and implementation of the system and the TV

application adopted to be the client for the blockchain

payment method. The fourth and last part contains an

overview of the solution itself, shortcomings, and problems

that have arisen during implementation and testing, and

finally, we will discuss possible improvements.

II. REQUIREMENTS

Purchase of content should be made on the chain itself. It

should be implemented as an Ethereum smart contract that

will provide functionalities such as purchase and storage

purchase history. Purchased history has two parts, valid and

expired. A valid subscription is the one that is still active and

allows the owner to consume it (Fig. 3), in our case, to watch

a movie or TV show. An expired subscription is essential for

validating existing payments and resolving any problems.

Additional requirements involve checking content access

rights for specific users, content validation by the provider,

etc. There is a set of functions related to administration, which

can be performed exclusively by the provider. It must be

ensured that the user cannot call them.

Fig. 3. The user interface for the Video on Demand service

In addition to the account user created in the TV

application, the user also received his Ethereum account and

can deposit money at physical ATMs or online. That order is

permanently linked to a TV application account, and every

content purchase is made through that account.

In this research, we did not want to use any currency assets.

Instead, we selected the Ethereum test network Rinkeby. In

this network, the currency has no real value, so we could

deposit any amount of money into the account for testing

purposes. For that reason, work does not cover depositing

currencies. That does not reduce the applicability of the

proposed solution, as only the target network has to be

changed to make it usable in the real world.

Executing the method from smart contracts may take some

time, but it is necessary to ensure that the application runs

smoothly while waiting for the answers to those calls. An

example screen for purchasing content is shown in Fig. 4. In

particular, Android has a built-in capability to interrupt

application execution that does not work for a while by

sending ANR - Application Not Responding error.

Fig. 4. The user interface for Video on Demand service when content is

locked (needs payment)

After the purchase, the user should be able to view the

content for 30 days before the first review or two days from

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.1 - Page 2 of 4 ISBN 978-86-7466-930-3

when the content was first viewed. After the period expires,

the content should be locked again until the next purchase.

Given that money can be sent by calling smart contract

functions, it is necessary to ensure that, in case of any error

when calling these functions, the payments are aborted, and

user funds remain untouched in the account.

III. IMPLEMENTATION

To implement our system, we had to implement two main

components. The first one is smart to contact that will be

positioned in the Ethereum test network. We used Solidity

high-level object-oriented programming language especially

designed for Ethereum networks. We selected Remix

development environment (IDE), written in JavaScript and

running under any web browser as a development

environment.

On the client-side, we had an Android TV application [7]

running on a set-top box (STB) device [8][9]. The application

was written in Java. We have selected the web3j library for

integration into the existing application to establish a

connection with Ethereum smart contract API [10].

For storing the user’s digital currency, we selected a digital

wallet Metamask, which was used to create the Ethereum

account. Its purpose is to save access to the digital currency

details in the Ethereum network.

 To simulate the Ethereum network, we created a network

of miners. For that purpose, we used an Infura cluster made of

full nodes. The cluster can execute contracts and alter the

chain.

Part of the smart contract is present in Fig. 5. There are

three fields of integer type. The myEtherValue field is an

auxiliary used to convert some numerical data into currency

Ether. At the same time, shortDuration and longDuration

represent the lengths of the period in which the buyer is

allowed to watch content. The ctAddress field is of the

address type, the type of data it represents in Solidity public

addresses of users in the Ethereum network. This is the

address of the crypto-telecom (provider) which will have

administrator privileges in the system.

In addition, there are two structures, Content and Deal.

Structure Content represents the content and contains fields

for name, price, and one auxiliary field. Structure Deal is

proof of purchase, the contract concluded between provider

and customer. It has the identifier of purchased content, the

time of the purchase, the time when the user first looked at the

content, and the field that indicates whether the content is still

viewed. The content folder, which maps the content identifiers

to data of the Content type, contains all available content of

the provider. Maps validDeals and archivedDeals map users

(addresses) into concluded contracts and are in the valid and

expired contracts, respectively.

The Web3j library receives the output of the Solidity

compiler [11][12] consisting of binary and ABI file and

generates a Java surrounding class smart contract, in this case,

class CryptoTelecom. Some of the methods of this class:

- load - loading the contract instance with the given

address, web3j object, user credentials, and gas variables.

- order – Wrapper method of the smart contract order

function. The return value is RemoteFunctionCall

<TransactionReceipt>, which represents identification of

transaction. Once the function is called, it will return its value

after the function is executed, the state of the contract is

changed, and that state is saved in the new transaction as part

of a new block in the blockchain.

Fig. 5. The interface of the contract class in Solidity.

- getOrderEvents - Read events from the order method in a

given transaction.

- getNumValidDeals - Wrapper method for function

getNumValidDeals() from smart contract. Example of a return

method that does not change the state of the contract. The

return value is immediately available because only data is

read.

Details about how we used Metamask, Rinkeby network,

and Infura cluster can be found in [13]. Also, the authors

omitted implementation details about the Android Java

application as reference code can be found in [9]. Work does

not lose clarity or applicability without those details, as that

information can be found both in given references and online

resources.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.1 - Page 3 of 4 ISBN 978-86-7466-930-3

IV. CONCLUSION

The novelty that this approach brings, and at the same time

one of its advantages, is that proof of the contract is no longer

stored in the provider's database - all are stored on the

Ethereum chain. This is interesting for the provider for two

reasons. The first is that maintenance of the database by the

provider is completely avoided, and the second is that no one

can write data to a chain without the consensus of the entire

network. Therefore, no one can falsely present themselves as

having the right to specific content. Furthermore, users who

purchase content are confident that their content rights will

remain untouched because data ends on a chain that cannot be

changed.

The virtues of this approach are numerous. However, there

are also drawbacks. Developers must pay close attention when

developing smart contracts because consequences in a system

that operates with money can be substantial [14]. Also, it is

important to optimize the program code as much as possible.

The gas is charged to the initiator of the transaction. Calls to

the smart contract function are calculated for every assembler

instruction executed. Therefore, additional effort should be

made to make the code as optimal as possible to lower gas

prices. Also, as transaction initiators are charged for gas, and

transactions are initiated by the users who buy the content, the

provider has no operating cost for the network. Another

approach is to subtract the price gas from the total price of the

content that the user buys, which would result in the situation

where the provider pays for network service and the user for

the content.

REFERENCES

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system."

Decentralized Business Review, 2008.

[2] M. Å. Hugoson, “Centralized versus decentralized information
systems.” IFIP Conference on History of Nordic Computing. Springer,

Berlin, Heidelberg, 2007. Vitalik Buterin, “Ethereum Whitepaper”,

https://ethereum.org/whitepaper/, 2013.
[3] Y. Tan, S. Kadhe, K. Ramchandran, “Proof-of-Stream: A Robust

Incentivization Protocol for Blockchain-based Hybrid Video on

Demand Systems”, UCB/EECS-2021-42, 2021
[4] J. Pons, “Blockchains and smart contracts in the culture and

entertainment business”, Réalités industrielles, 2017

[5] N. Szabo, “The Idea of Smart Contracts”,
https://nakamotoinstitute.org/the-idea-ofsmart-contracts/, 1997.

[6] Theta Labs, “Theta Mainnet 4.0 - Introducing Theta Metachain to

Power Web3 Businesses”, accessed May 2022,
https://assets.thetatoken.org/theta-mainnet-4-whitepaper.pdf

[7] I. Pan, N. Lukić, “Design and architecture of software systems:

Android-based systems”, FTN Publishing, Novi Sad, 2015.
[8] K. Yaghmour, “Embedded Android”, O ‘Reilly Media, 2013.

[9] N. Schapeler, “A example to Ethereum Development On Android using

Web3j and Infura”, accessed May 2022,
https://medium.datadriveninvestor.com/an-introduction-to-ethereum-

development-on-android-using-web3j-and-infura-763940719997

[10] "Ethereum documentation", accessed May 2022,
https://ethdocs.org/en/latest/

[11] "GitHub", Solidity, accessed May 2022,
https://github.com/ethereum/solidity

[12] “Solidity documentation”, accessed May 2022,

https://solidity.readthedocs.io/en/v0.6.9/.
[13] I. Srdic, BSc thesis “Realizacija multimedijalne pretplate korišćenjem

blokčejna”, ETF, 2020

[14] K. O'Hara, "Smart Contracts - Dumb Idea," in IEEE Internet
Computing, vol. 21, no. 2, pp. 97-101, Mar.-Apr. 2017, doi:

10.1109/MIC.2017.48.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.1 - Page 4 of 4 ISBN 978-86-7466-930-3

Abstract—In recent years, machine learning has reached quite

sophisticated level of usability within applications across various

domains – ranging from booking reservations and media content

delivery to business and healthcare. However, the deployment of

machine learning models, together with parameter tuning and

periodic training, which are necessary to maintain satisfiable

performance, represent time consuming processes, requiring

various types of skills - both DevOps and data analysis-related.

In this paper, we leverage model-driven approach in synergy

with code generation with aim to automatize the so-called

MLOps activities, relying on ZenML framework for pipeline

automation and Kubernetes for containerized task orchestration.

On top of that, we leverage Blockchain for infrastructure

provisioning. Our goal is to reduce the cognitive load of

infrastructure and services management within systems relying

on machine learning. The framework is evaluated in scenarios

using PyTorch-based deep learning predictive models. According

to the results, the proposed approach reduces both the time and

skill required for successful MLOps activities.

Index Terms—DevOps; Kubernetes; MLOps; PyTorch;

Blockchain.

I. INTRODUCTION

Continuous integration and delivery have become standard

in software engineering workflow within the last decade. The

goal of so-called DevOps practice is to align the deployment

of software artifacts with business goals which are enabled by

them, so the customer’s organization can benefit from them as

quickly as possible. However, operations related to underlying

infrastructure management are becoming more and more

complex, due to heterogeneity of services, devices and

increasing performance demands. Therefore, due to fact that

machine learning (ML) services are recognized as crucial

enablers of novel usage scenarios across various domains, a

distinct subfield with focus on them has emerged, known as

MLOps [1-4]. It is an extension of now well-established

DevOps paradigm with aspects specific to service delivery in

machine learning, such as continuous model training for

prediction performance improvement, rapid deployment and

parameter tunning towards automated generation of complex

ML task pipelines [1-4].

In this paper, the focus is on reducing the complexity of

MLOps-related activities and service delivery relying on

model-driven approach [5]. Moreover, the business-related

Nenad Petrović is with the Faculty of Electronic Engineering, University

of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
nenad.petrovic@elfak.ni.ac.rs), (https://orcid.org/0000-0003-2264-7369)

aspects of infrastructure resource provisioning and usage

charging using blockchain by the provider are also

considered. The main contributions of this paper are the

following: 1) MLOps metamodel – defining the structure of

user-created model instances representing machine learning

pipelines with several distinct steps together with aspects

related to its deployment 2) code generator – leverages the

model for automated code generator covering several aspects:

pipeline script, predictive model, infrastructure management

3) blockchain-based transaction model making use of smart

contracts for renting high-performance computing resources

aiming accelerated machine learning.

In our previous works, metamodel-based approach in

synergy with ontologies was leveraged for automated

container-based service deployment in Fog Computing [6].

On the other side, a similar method was adopted in [7] for

generation of predictive models starting from high-level

predictive problem descriptions aiming state-of-art mobile

network infrastructure planning and management.

II. BACKGROUND

A. ZenML

ZenML [8] is open-source, high-level Python framework

for machine learning pipeline automation. It is available as

Python library in form of function decorators and specific

classes inside scripts, while it imposes pre-defined code

structure. The overview of main ZenML-related concepts and

terminology is given in Table I.
TABLE I

ZENML CONCEPTS OVERVIEW

Concept Description

Repository A special type of directory, declared used zenml

init command. Each ZenML action must take place

within a repository, which is created

Step Single stage within ML flow, representing a node of

in ML flow computation graph. Implementation-wise,

they represent Python functions with typed

parameters in signature for both arguments and return

value. Decorator used is @step, while step result

caching can be enabled using enable_cache=True

parameter

Pipeline A sequence of steps. It connects all the steps, their

inputs and outputs. Decorator used is @pipeline.

Moreover, it is possible to set the list of external

libs/dependencies from .txt file can be done using

requirements_file attribute of the decorator. It is

run by invoking pipeline.run() method inside

Python script. Optionally, a scheduler object can be

assigned for periodic execution of certain steps

enabling scenarios such as continuous model training.

Model-Driven Approach to Blockchain-Enabled

MLOps

Nenad Petrović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 1 of 6 ISBN 978-86-7466-930-3

Stack Represents environment and configuration of MLOps

platform infrastructure. It consists of: artifact store,

metadata store, container registry, orchestrator and

custom step operators. Creating a new stack with

desired parameters is done using stack register,

while it is run using stack up command., which has

to be done before running any pipeline.

Artifact store Persistent storage of step results.

Materializer Defines how data is passed between steps.

Serialization and deserialization are used while

storing/retrieving results.

Metadata store Keeps the data related to pipeline, step and

experiment configuration and references for tracking

of inputs/outputs within artifact store created within

ML pipeline.

Orchestrator Component for scheduling and running pipeline steps

Container

registry

Stores Docker images required for running the steps

Custom step

operator

User-defined environments for running ML flow tasks

within Docker containers

Integration Enable usage of various third-party tools enriching

ML development like pytorch, tensorflow and

sklearn. Apart from that, it also includes orchestrator-

enabled stacks, such as local-kubeflow (Kubernetes-

based) and airflow.

Depiction of ZenML architecture showing how the

previously mentioned concepts are related is given in Fig. 1.

Fig. 1. ZenML concepts and their relations.

Additionally, Fig. 2 shows the programming workflow

using ZenML. First, we initialize a repository inside the

desired directory where we place our Python script. After that,

in Python code we define the typical steps of ML flow: 1)

importer – downloading and loading dataset 2) trainer –

passing through dataset and updating model weights for new

predictions 3) evaluator – estimates how good the prediction

performance is, according to the given metric (accuracy for

classification; mean relative error - MRE for regression).

Moreover, we connect the steps in a sequence as shown

within the pipeline object and finally run the pipeline object

instance.

Fig. 2. ML pipeline creation using ZenML in Python.

B. Kubernetes

Kubernetes [9] represents an open-source platform whose

goal is to enable deployment and management of

containerized services run on multi-server clusters.

Furthermore, it provides convenient access to useful features,

such as scalability, fault-tolerance and declarative

configuration. Table III gives an overview of key concepts

within Kubernetes-based architectures.
TABLE III

KUBERNETES CONCEPTS OVERVIEW

Concept Description

Control plane Cluster management component, responsible for

global decisions, and scheduling

Node Worker machines within the cluster running

containerized apps

Pod Smallest deployable unit, which consists of one or

more app containers. These containers share storage,

network specification and config. Optionally, might

include data volumes for persistent storage

Service A logical set of pods

Kubectl Comamnd-Line Interface (CLI) tool for running

commands against Kubernetes cluster, such as:

-Deployment (kubectl apply

deployment.json and kubectl create

deployment dep_name --

image=docker_image

-Scaling up/down (kubectl scale --

replicas=num resource_name)

-Retrieval of node, pod and service info (kubectl

get pods, nodes, services)

Despite the fact that Kubernetes provides automatic

scheduling capabilities, there might be situations where

deployment of pod has to be done on a specific node. In that

case, we leverage node labels. The corresponding command

for labelling a node has the following form: kubectl label

nodes <node_name> label_name=label_value. After

that, when we want to create a pod using YAML

configuration file, it would be necessary to make use of

nodeSelector property and set it as

label_name:label_value.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 2 of 6 ISBN 978-86-7466-930-3

Kubernetes-based architecture is depicted in Fig. 3. In this

paper, we make use of containerized custom step operators in

ZenML run as Kubernetes pods, which are actually containers

running PyTorch code. Moreover, node labels are leveraged in

order to have low-level scheduling control and determine

where each of these steps will be executed, enabling

additional flexibility.

Fig. 3. Kubernetes-based containerized app architecture.

III. IMPLEMENTATION

A. Workflow Overview

Model-driven workflow of the proposed framework for

automated ML-related task deployment is illustrated in Fig. 4.

In the first step, user creates a deployment diagram model

instance which describes the ML pipeline and underlying

execution infrastructure details. After that, the model is

parsed, so code generator constructs Python script containing

the ML pipeline code relying on ZenML and PyTorch in

synergy with numpy. Moreover, corresponding Kubernetes

orchestrator commands are generated in order to ensure that

distinct pipeline steps are executed on the desired cluster

nodes. Additionally, the allocated resources are charged to the

customer by parametrizing smart contracts for blockchain-

based transactions, while the price might vary due to presence

of deep learning accelerator cards on some of the nodes.

Finally, the generated machine learning Python script is

executed on the allocated computing nodes.

Fig. 4. Blockchain-enabled model-driven MLOps workflow.

B. MLOps Metamodel

When it comes to adoption of model-driven engineering,

we make use of metamodel which defines the structure of

user-created deployment diagram (shown in Fig. 5). For

implementation, Ecore [10] within Eclipse Modelling

Framework (EMF) [11] in Java is used, which automatically

generates all the auxiliary classes for model manipulation,

together with convenient GUI-enabled editor.

The highest-level concept is Pipeline, which consists of one

or more machine learning tasks, referred to as Step. A Pipeline

can be executed periodically for purpose of continuous

training, which is defined by repeatTime property. Moreover,

each of the Steps can be one of the following type with

specific, distinct properties: Importer, Trainer or Evaluator.

Importer represents ML task which downloads the

corresponding dataset and opens the downloaded file. In this

context, it is necessary to set URL corresponding to the

location where dataset is stored online, denoted as onlineData.

Otherwise, if dataset is local and already present on disk,

another parameter is used – localData. When it comes to

trainer step, it is possible to set its learning rate, number of

batches, select the target implementation technology, but we

make use of PyTorch in this paper. Each trainer can use pre-

created model, given by modelPath or it is necessary to define

a custom neural network. For custom neural network, its

architecture is described using Layer element, while each of

them has type (such as Convolutional – in image classification

or standard Fully Connected in Multi-Layer Perceptron),

number of processing units (neurons) and activation function

(such as ReLU, softmax, sigmoid). Finally, the performance

metric used within Evaluator step depends on the type of

machine learning task, and we cover two possibilities relevant

to supervised learning as predictionType property of Pipeline

– classification (Accuracy) and regression (Mean Relative

Error).

On the other side, the aspects of distinct Step deployment

are covered by the metamodel as well. For each pipeline part,

there is an attribute targetLabel, describing which worker

node within Kubernetes cluster would be preferred for

execution of pod created within custom step operator.

Additionally, infrastructure executing the pipeline is

represented as Cluster that consists of Nodes. For each Node,

the following properties are customizable, such as label,

location, IP address, accelerator (whether it has dedicated

hardware for deep learning attached) and unit price

(depending on the node performance).

Fig. 5. UML class diagram of MLOps metamodel.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 3 of 6 ISBN 978-86-7466-930-3

C. Code Generation

The user-drawn deployment model is first parsed and then

traversed relying on Ecore-generated classes. Pipeline element

and iterated for each of the contained steps. When it comes to

each step, it is necessary to get the target label and insert it

into nodeSelector section within Kubernetes deployment

YAML file. After that, depending on the step type,

corresponding template is used. For importer steps, it is only

necessary to change the path where pre-created model is

located. When it comes to trainer, it contains model training

loop iterating for given number of epochs through batch

number of dataset samples and desired learning rate (α) value.

For evaluator step, the corresponding method is chosen

according to the type of prediction problem. Additionally, the

leasing of resources is charged to the customer by valorizing

blockchain smart contract with unit price of the selected node.

Finally, the previously created Kubernetes YAML describing

step deployment is applied, so the pod with Docker container

running ML task inside is spawned on the selected node.

Pseudocode of the code generation procedure is given in

Table IV.
TABLE IV

CODE GENERATION PSEUDOCODE

D. ZenML pipeline Relying on PyTorch Deep Learning

Models

Deep learning refers to approach in artificial intelligence

making use of neural networks with one or many hidden

layers between the inputs and outputs. PyTorch [12] is library

for Python which covers the required set of capabilities for

deep learning: tensor manipulation and high-level object-

oriented representation of both models and datasets. In Fig. 6,

an excerpt of typical ZenML pipeline relying on PyTorch

models is given. This kind of Python script actually represents

one of the outputs of code generator. When it comes to neural

network models in PyTorch, their capabilities are

encapsulated within Module class which has to be inherited by

any custom model. In this class, within the constructor we

define neural network architecture (layers, nodes and

activation functions), while forward connects the layers

defining how data passes through neural network. In given

example, we use MNIST dataset [13] of handwritten digits for

purpose of classification.

Fig. 6. ZenML PyTorch training script for MNIST dataset.

Input: MLOps deployment model

Output: Python script, Kubernetes commands, Smart contract
Steps:

1. deployment.elements:=parse(model);

2. Retrieve pipeline from deployment.elements;
3. For each step in pipeline

4. Create nodeSelector for step.targetLabel;

5. If(step is Importer)
6. Generate importer loading dataset from step.localData or onlineData;

7. If(step is Trainer)

8. Load model from step.modelPath;
9. Generate TrainerCode(step.epochs, step.batch, step.alpha);

10. If(step is Evaluator)

11. If pipeline.predictionType is regression
12. Use Mean Relative Error;

13. Else

14. Use Accuracy;
15. Get node.unitPrice;

16. Calculate total leasing price as step.estimatedTime*step.node.unitPrice

17. Genrate smart contract between pipeline.customerId and

step.node.providerId for total price;

18. Apply Kubernetes deployment for pod with step.id;

19. End for each
20. End

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.flat_network = nn.Sequential(

 nn.Flatten(),

 nn.Linear(784, 311),

 nn.ReLU(),

 nn.Linear(311,10)

)

 # fully connected layer, output 10 classes

 self.out = nn.Linear(10, 10)

 def forward(self, x):

 x = torch.unsqueeze(x, dim=0)

 x = self.flat_network(x)

 x = self.out(x)

 output = self.out(x)

 return output

def get_data_loader_from_np(X: np.ndarray, y: np.ndarray) -> DataLoader:

 tensor_x = torch.Tensor(X) # transform to torch tensor

 tensor_y = torch.Tensor(y).type(torch.LongTensor)

 torch_dataset = TensorDataset(tensor_x, tensor_y)

 torch_dataloader = DataLoader(torch_dataset)

 return torch_dataloader

@step(custom_step_operator="trainer1", enable_cache=False)

def torch_trainer(

 X_train: np.ndarray,

 y_train: np.ndarray,

) -> nn.Module:

 train_loader = get_data_loader_from_np(x_train, y_train)

 model = Net().to(DEVICE)

 optimizer = optim.Adadelta(model.parameters(), lr=0.001)

 scheduler = StepLR(optimizer, step_size=1, gamma=0.01)

 for epoch in range(1, num_epochs):

 model.train()

 for batch_idx, (data, target) in enumerate(train_loader):

 data, target = data.to(DEVICE), target.to(DEVICE)

 optimizer.zero_grad()

 output = model(data)

 loss = F.nll_loss(output, target)

 loss.backward()

 optimizer.step()

 scheduler.step()

 return model

@step(custom_step_operator="evaluator1", enable_cache=False)

def classification_evaluator(

 X_test: np.ndarray,

 y_test: np.ndarray,

 model: nn.Module,

) -> float:

 model.eval()

 test_loader = get_data_loader_from_np(x_test, y_test)

 test_loss = 0

 correct = 0

 with torch.no_grad():

 for data, target in test_loader:

 data, target = data.to(DEVICE), target.to(DEVICE)

 output = model(data)

 test_loss += F.nll_loss(

 output, target, reduction="sum"

).item()

 pred = output.argmax(

 dim=1, keepdim=True

)

 correct += pred.eq(target.view_as(pred)).sum().item()

 return correct / len(test_loader.dataset)

@step(custom_step_operator="importer1", enable_cache=False)

def my_importer() -> Output(

 x_train=np.ndarray, y_train=np.ndarray, x_test=np.ndarray, y_test=np.ndarray

):

 (X_train, y_train), (

 X_test,

 y_test,

) = load_data(dataset_path)

 return x_train, y_train, x_test, y_test

@pipeline(required_integrations=[PYTORCH])

def my_pipeline(

 importer,

 trainer,

 evaluator,

):

 x_train, y_train, x_test, y_test = importer()

 model = trainer(x_train=x_train, y_train=y_train)

 evaluator(x_test=x_test, y_test=y_test, model=model)

continous_train = Schedule(

start_time = datetime.now(),

end_time = datetime.now() + timedelta(minutes = 5),

interval_second = 60

)

if __name__ == "__main__":

 torch_pipeline = my_pipeline(

 importer=my_importer(),

 trainer=torch_trainer(),

 evaluator=classification_evaluator(),

)

 torch_pipeline.run(schedule = continous_train)

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 4 of 6 ISBN 978-86-7466-930-3

E. Resource Leasing Relying on Solidity Smart Contract

Blockchain enables decentralized approach to immutable

and irreversible transactions relying on approval by huge

network of computer nodes, making it secure and reliable. On

the other side, smart contracts define actions executed within

protocol for realization of blockchain-based transaction. In

this paper, we make se of Ethereum blockchain in synergy

with Solidity smart contracts [14]. Solidity code of the

underlying transaction mechanism for resource leasing in

context of ML task execution is given in Fig. 7. As it can be

seen, the information stored as part of transaction consists of

customerId, providerId and identifier of node which will

execute some ML task which represents a step within

pipeline. First, the total price is calculated by multiplying

unitPrice and estimatedTime required for step execution.

After that, the transaction itself is performed by transferring

the previously calculated total amount of tmokens from

customer’s to provider’s account.

Fig. 7. Solidity smart contract for ML task resource leasing.

IV. EXPERIMENTS AND EVALUATION

For evaluation of the proposed framework, three publicly

available image classification datasets were used. The first

two tackle image classification problem: 1) yoga pose

determination (our previous work presented in [15]) - 5 poses

in dataset of 1551 images 2) MNIST [13] – 70 000 images of

handwritten digits 0-9. On the other side, a regression

problem of service demand prediction in telco networks from

[7] was considered as the third case. In all of the experiments,

test was 20% of the overall dataset with no overlapping

samples from training set. The presented experiments were

run on MacBook Pro (16-inch, 2019) laptop, equipped with

2.3GHz 8-core Intel Core i9 CPU, 16GB of DDR4 memory,

1TB SSD and Intel UHD Graphics 630 with 1.5GB VRAM.

On the other side, Kubernetes cluster consisted of two more

Ubuntu machines equipped with Intel i5 CPU, 8GB DDR4

RAM and 4GB GPU.

The results of the experiments are given in Table IV.

Several aspects were considered: code generation time, model

training time, speed-up compared to manual pipeline creation

including model creation (moderately experienced machine

learning engineer) and achieved prediction performance

(MRE for regression, accuracy for classification).

TABLE IV

EXPERIMENT RESULTS

Case Code

generation

[s]

Model

training

[s]

Speed-

up

[times]

Performance

[%]

Manual

pipe

[s]

Yoga

pose

[15]

0.911 317 45 Accuracy

73%

104

MNIST

[13]

0.87 124 36 Accuracy

96%

91

Telco

[7]

0.93 27 21 MRE

9%

88

As it can be seen, in all the cases, the achieved speed-up

was more than 20 times compared to traditional approach

involving manual Python code writing from scratch.

However, the speed-up is more significant is case of more

complex models based on convolutional neural networks with

huge number of layers – it was yoga pose determination. In

our case, the only manual operation is pipeline deployment

model creation using GUI tool, which took about 1.5 minutes

in our experiments. All the models show almost identical

performance to traditional counterparts, as expected. When it

comes to code generation, execution time does not exceed 1

second in the presented case studies. Finally, the overhead of

model training compared to execution without MLOps

framework is around 15% when run on single machine and

k3d [16] local Kubernetes cluster, but can be compensated by

smart scheduling techniques, especially for larger datasets.

V. CONCLUSION AND FUTURE WORK

According to the achieved experimental results, the

proposed model-driven approach to MLOps leveraging

automated code generation further speeds up the development

of machine learning services, required administration

operations and their delivery to the customers. Moreover, it

also accelerates resource leasing protocols adopting

blockchain-based smart contracts for transactions and their

automated generation. Finally, the adoption of intuitive

model-driven tools opens new horizons of machine learning

service adoption and management even by persons without

expertise in this area.

However, there are several possible research directions in

future. First, we would work on integration of model-driven

resource allocation mechanisms relying on multi-objective

optimization approach [17] for energy and cost-efficient ML

pipeline task scheduling. Moreover, the incorporation more

sophisticated federated learning mechanisms and neural

network layer splitting strategies across multiple cluster nodes

aiming time-critical scenarios would be considered as well.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education,

Science and Technological Development of the Republic of

Serbia.

contract LeasingInfrastructure {

 address public providerId;

 uint32 public nodeId;

 uint32 public stepId;

 mapping (address => uint) public balances;

 event Sent(address customerId, address providerId, uint total);

 function leaseNode(address received, uint unitPrice, uint estimateTime) public {

 total = uintPrice*estimatedTime;

 require(total <= balances[msg.sender], "Not enough tokens");

 balances[msg.customerId] -= total;

 balances[providerId] += total;

 emit Sent(msg.customerId, providerId, total);

 }

}

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 5 of 6 ISBN 978-86-7466-930-3

REFERENCES

[1] G. Symeonidis, E. Nerantzis, A. Kazakis and G. A. Papakostas,

"MLOps - Definitions, Tools and Challenges," 2022 IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC),

pp. 453-460, 2022. https://doi.org/10.1109/CCWC54503.2022.9720902

[2] S. Moreschini, F. Lomio, D. Hästbacka, D. Taibi, "MLOps for
evolvable AI intensive software systems”, IEEE International

Conference on Software Analysis, Evolution and Reengineering 2022,

pp. 1-2, 2022.
[3] D. Kreuzberger, N. Kühl, S. Hirschl, “Machine Learning Operations

(MLOps): Overview, Definition, and Architecture”, preprint, 2022.

[4] D. A. Tamburri, “Sustainable MLOps: Trends and Challenges”, 2020
22nd International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC), pp. 17-23, 2020.

https://doi.org/10.1109/SYNASC51798.2020.00015
[5] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software

Engineering in Practice, 2nd Edition, Morgan & Claypool Publishers,

2017.
[6] N. Petrovic, M. Tosic, “SMADA-Fog: Semantic model driven approach

to deployment and adaptivity in Fog Computing”, Simulation Modelling

Practice and Theory, 102033, pp. 1-25, 2019.
https://doi.org/10.1016/j.simpat.2019.102033

[7] D. Krstić, N. Petrović, I. Al-Azzoni, “Model-Driven Approach to

Fading-Aware Wireless Network Planning Leveraging Multiobjective
Optimization and Deep Learning”, Mathematical Problems in

Engineering, vol. 2022, 4140522, Special Issue: Mathematical

Modelling of Data Transmission in Next Generation Wireless Systems,

2022, pp. 1-23, 2022. https://doi.org/10.1155/2022/4140522
[8] ZenML [online]. Available on: https://zenml.io/, last accessed:

08/05/2022.

[9] Kuberentes [online]. Available on: https://kubernetes.io/, last accessed:
08/05/2022.

[10] Eclipse Modeling Framework [online]. Available on:

https://www.eclipse.org/modeling/emf/, last accessed: 08/05/2022.
[11] Ecore [online]. Available on: https://wiki.eclipse.org/Ecore, last

accessed: 08/05/2022.

[12] E. Stevens, L. Antiga, T. Viehmann, Deep Learning with PyTorch,
Manning Publications, 2020

[13] The MNIST database of handwritten digits [online]. Available on:

http://yann.lecun.com/exdb/mnist/ , last accessed: 08/05/2022.
[14] Solidity [online]. Available on: https://docs.soliditylang.org/en/v0.8.13/,

last accessed: 08/05/2022.

[15] M. Radenković, V. Nejković, N. Petrović, “Adopting AR and Deep
Learning for Gamified Fitness Mobile Apps: Yoga Trainer Case Study”,

AIIT 2021 International conference on Applied Internet and Information

Technologies, pp. 167-171, 2021.
[16] K3d [online]. Available on: https://k3d.io/v5.4.1/ , last accessed:

08/05/2022.

[17] I. Al-Azzoni, J. Blank, N. Petrović, “A Model-Driven Approach for
Solving the Software Component Allocation Problem”, Algorithms

2021; 14(12):354, pp. 1-19, 2021. https://doi.org/10.3390/a14120354

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.2 - Page 6 of 6 ISBN 978-86-7466-930-3

https://doi.org/10.1109/CCWC54503.2022.9720902
https://doi.org/10.1109/SYNASC51798.2020.00015
https://doi.org/10.1016/j.simpat.2019.102033
https://doi.org/10.1155/2022/4140522
https://zenml.io/
https://kubernetes.io/
https://www.eclipse.org/modeling/emf/
http://yann.lecun.com/exdb/mnist/
https://docs.soliditylang.org/en/v0.8.13/
https://k3d.io/v5.4.1/
https://doi.org/10.3390/a14120354

Controllability of the multi-agent system modeled
by the chain graphs with repeated degree

Milica And̄elić
Department of Mathematics,

Kuwait University,
Safat 13060, Kuwait

milica.andelic@ku.edu.kw

Edin Dolićanin
Department of Technical Sciences

State University of Novi Pazar
Novi Pazar, Serbia

edin@np.ac.rs

Zoran Stanić
Faculty of Mathematics,
University of Belgrade,

Serbia
zstanic@matf.bg.ac.rs

Abstract—We consider the controllability of multi-agent dy-
namical systems modeled by a special class of bipartite graphs,
called chain graphs. Our particular attention is focused on chain
graphs that have one repeated degree. We derive properties of
eigenvectors of graphs under consideration as well as some of
their Laplacian spectra. On the basis of the obtained theoretical
results, we determine the minimum number of leading agents
that make the system in question controllable and locate them
in the corresponding graph.

Index Terms—Chain graph, Laplacian spectrum, Eigenvec-
tors, Controllable dynamical system

I. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph (without loops or
multiple edges) of order n = |V (G)|. By A(G) we denote
its (0, 1)-adjacency matrix. If D(G) is the diagonal matrix of
vertex degrees, then L(G) = D(G) − A(G) stands for the
Laplacian matrix of G. The Laplacian eigenvalues of G are
the eigenvalues of L(G) and they form σ(G), the Laplacian
spectrum of G.

We consider a multi-agent system with n linear agents
{1, 2, . . . , n} modeled by a graph G. If xi denotes the state of
the agent i, its dynamics is described by the single integrator

ẋ(t) = −
∑

j∈N(i)

(xi(t)− xj(t)),

where N(i) denotes the set of neighbours of i. The compact
dynamics can be written as ẋ(t) = −L(G)x(t), where x is the
vector of the agents’ states and L(G) is the graph Laplacian.

Following [6] by ` and f we denote affiliations with leaders
and followers. A follower graph Gf of G is the subgraph
induced by the set of followers. Consequently, the graph
Laplacian L(G) of G may be written as

L(G) =

(
Lf (G) lf`(G)
lᵀf`(G) L`(G)

)
. (I.1)

The control system we consider is the leader-follower system(
ẋf (t)
u̇(t)

)
= −

(
Lf (G) lf`(G)
lᵀf`(G) L`(G)

)(
xf (t)
u(t)

)
,

where followers evolve through the Laplacian-based dynamics

ẋf (t) = −Lf (G)xf (t)− lf`(G)u(t), (I.2)

and u denotes the external control signal ran by the leaders’
states.

The system modeled by (I.2) is said to be controllable if it
can be driven from any initial state to any desired final state in
a finite time. In the study of the controllability of multi-agent
systems, the main problem is to determine the locations of
leaders under which the controllability can be realized. The
multi-agent system (I.2) is said to be k-leaders controllable
if there exist minimum number of k leaders to make (I.2)
controllable. In particular, if k = 1, the system (I.2) is called
single leader controllable.

We recall a useful argument for further analysis of control-
lability of multi-agent systems.

Lemma I.1. ([5]) The system (I.2) is controllable if and only
if there is no eigenvector for L(G) taking 0 on all entries
corresponding to leaders, i.e. if and only if L(G) and Lf (G)
do not share any common eigenvalues.

Multi-agent systems arise in many areas of science and
engineering (see for example [1], [5], [7], [8], [10], [12]).
In this paper we focus on controllability of chain graphs, in
particular to chain graphs with one repeated degree. Chain
graphs are 2K2, C3, C5 graphs, which implies that they are
also bipartite graphs. We determine the minimum number of
leaders needed to make the corresponding system (I.2) mod-
eled by such a graph controllable and provide the locations
of leaders in the graph.

The paper is organized as follows. In Section II we give
some preliminary results on the structure of chain graphs
and on their spectrum. In Section III we present several
results concerning Laplacian spectrum and eigenvectors of
chain graphs with one repeated degree. In Section IV we
consider the controllability of systems (I.2) modeled by a
corresponding chain graph. In Section V we present several
concluding remarks.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.3 - Page 1 of 4 ISBN 978-86-7466-930-3

II. PRELIMINARIES

The Laplacian matrix L(G) of any graph G is symmetric
and positive semidefinite. Moreover, 0 is an eigenvalue of G
afforded by the all-1 vector j. Therefore, we may assume that
the eigenvalues of G (in fact, the roots of the characteristic
polynomial φ(L(G), x) = det(xI − L(G))) are indexed in
non-increasing order and given as follows:

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 .

We denote by σ(G) the spectrum of G, i.e. the multiset of its
eigenvalues.

The vertex set of a chain graph G consists of two colour
classes that are partitioned into h non-empty cells

⋃h
i=1 Ui

and
⋃h

i=1 Vi, respectively. All vertices in Us are joined to all
vertices in

⋃h+1−s
k=1 Vk, for 1 ≤ s ≤ h. Therefore, all vertices

in Ui (resp. Vj) are co-neighbours, i.e. they share the same set
of neighbours. If ms = |Us| and ns = |Vs|, for 1 ≤ s ≤ h,
then G is denoted by

DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) .

A chain graph is sketched in Figure II.1.

U1

U2

Uh−1

Uh

m1

m2

mh−1

mh

Vh

Vh−1

V2

V1

nh

nh−1

n2

n1

Fig. II.1. The chain graph G = DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh).

If we follow the vertex ordering from the partition(⋃h
i=1 Ui

)
∪
(⋃h

i=1 Vi
)
, then the quotient matrix Q(G) of

a chain graph G has the form

d1 −n1 · · · −nh−1 −nh

d2 −n1 · · · −nh−1

. . .
... . .

.

dh −n1

−m1 · · · −mh−1 −mh d∗
1

−m1 · · · −mh−1 d∗
2

... . .
. . . .

−m1 d∗
h


.

(II.1)

The corresponding diagonal blocks we shortly denote by
D1, D2, while off-diagonal ones we denote by B1, B2.

It is well-known that every eigenvalue of Q(G) is an
eigenvalue of G. For more results on spectral properties of
chain graphs the reader is referred to [4], [9], [11].

III. LAPLACIAN SPECTRUM OF DNG(k, 1, . . . , 1; 1, . . . , 1)

In this section we investigate spectral properties of chain
graphs with one repeated degree. These graphs are of the form
DNG(k, 1, . . . , 1︸ ︷︷ ︸

h

; 1, . . . , 1︸ ︷︷ ︸
h

). Since G has only one repeated

degree, then k > h.

Theorem III.1. Let DNG(k, 1, . . . , 1︸ ︷︷ ︸
h

; 1, . . . , 1︸ ︷︷ ︸
h

), k > h. Then

σ(G) = {0, hk−1, κ1, κ2, . . . , κ2h−1},

where
κi ∈ (i− 1, i), i ∈ {1, . . . , h− 1}
κh+i ∈ (k + i− 1, k + i), i ∈ {1, . . . , h− 1}
κ2h ≥ k + h,

Proof. Taking into account that di = h + 1 − i, 1 ≤ i ≤ h
and d∗j = k+ h− j, 1 ≤ j ≤ h and employing [13, Theorem
3.5], we get that the characteristic polynomial φ(L(G), x) of
L(G) is given by

x(x−h)k−1
k+h−1∏
i=1

(x−i)

 1

p1
+ x

h∑
j=2

1

(x− dh+2−j)pj
+

1

x− d1

 .

Since x(x − h)k−1 is a factor of φ(L(G), x), the remaining
eigenvalues are the roots of the polynomial

p(x) =

k+h−1∏
i=1

(x−i)

 1

p1
+ x

h∑
j=2

1

(x− dh+2−j)pj
+

1

x− d1

 .

Then we have:
• p(0) = (−1)k+h(2h+ k − 1) (k+h−2)!

h ;
• p(1) = (−1)k+h+1(k + h− 3)(k + h− 3)!;
• p(`) = (−1)k+h+`2`(h + 1)(` − 1)!(k + h − 2` −

2)! (k+h−`−1)!
(k+h−2`)! , for 2 ≤ ` ≤ h− 1;

• p(k) = (−1)h+1 k!
(k−h+1)(k−h) (h− 1)!

• p(k + `) = (−1)h−`+12(`+ 1) (k+`)!
(k+2`−h+1)(k+2`−h) (h−

`− 1)!, for 1 ≤ ` ≤ h− 1;
• p(k + h) = −(k + h− 2) · (h− 1)! < 0.

From the obtained values, we conclude that
p(0), p(1), . . . , p(h − 1) alternate in sign. Therefore, for any
i ∈ {1, 2, . . . , h−1}, we have p(t) = 0, for some t ∈ (i−1, i).
Similar argument holds for p(k), p(k + 1), . . . , p(k + h− 1),
and consequently, for every i ∈ {k + 1, . . . , k + h − 1} we
have p(t) = 0 for some t ∈ (i − 1, i). Also, since p is a
monic polynomial and p(k+ h) < 0, it follows that p(t) = 0
holds for some t > k + h.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.3 - Page 2 of 4 ISBN 978-86-7466-930-3

We illustrate the results of Theorem III.1 on the following
example.

Example III.2. Let G = DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1). Then

σ(G) = {13.03, 9.64, , 08.6, 7.58, 6.58, 3.82, 2.86, 1.92, 0.96}
∪ {55, 0}.

Next we observe the structure of eigenvectors of L(G)
corresponding to non-integer eigenvalues.

Theorem III.3. Let G = DNG(k, 1, . . . , 1; 1, 1, . . . , 1) with
k > h, µ a non-integer eigenvalue of G and x =
(x1, x2, . . . , xn)

ᵀ an associated eigenvector. Then xi 6= 0 for
any 1 ≤ i ≤ k.

Proof. We recall first, (see, for example, [13]) a relation
between the eigenvectors of Q(G) and those of G for the same
eigenvalue. A vector v = (y1, y2, . . . , yh, z1, z2, . . . , zh)

ᵀ is
an eigenvector of Q(G) for µ, if and only if the corresponding
eigenvector of G for the same eigenvalue has the form

x = (y1, y1, . . . , y1︸ ︷︷ ︸
k

, y2, . . . , yh, z1, . . . , zh)
ᵀ.

Assume on the contrary that x is an eigenvector for the
non-integer eigenvalue µ of L(G) such that xi = 0, 1 ≤ i ≤
k. By [13, Lemma 3.4], µ is also an eigenvalue of Q(G).
So there exists a non-zero vector (y z)ᵀ ∈ R2h such that
Q(G)(y z)ᵀ = µ(y z)ᵀ with y1 = 0. Then the eigenvalue
equation (

D1 −B1

−B2 D2

)(
y
z

)
= µ

(
y
z

)
can be rewritten as

D1y −B1z = µy

−B2y +D2z = µz.

The matrices B1, B2 have full rank, and therefore are invert-
ible. Next, from

z = B−11 (D1 − µIh)y
y = B−12 (D2 − µIh)z,

we conclude that

y = B−12 (D2 − µIh)B−11 (D1 − µIh)y,

i.e. y is an eigenvector of

P = B−12 (D2 − µIh)B−11 (D1 − µIh)

for the eigenvalue 1. The latter product is the product of two
anti-bidiagonal matrices B−12 (D2 − µIh) that is



(k − µ)/k
−(k − µ)

. .
.

. .
.

(k + h− 2− µ)
(k + h− 1− µ) −(k + h− 2− µ)


and B−11 (D1 − µIh)

(1− µ)
(2− µ) −(1− µ)

. .
.

. .
.

(h− 1− µ)
(h− µ) −(h− 1− µ)


,

and hence it is a tridiagonal matrix with

p1,1 =
(h− µ)(k − µ)

k

p`,` = (h+ 1− `− µ)
(k + `− 1− µ

mh+1−`
+ (k + `− 2− µ)

)
,

2 ≤ ` ≤ h,
p`,`−1 = −(h− `+ 2− µ)(k + `− 2− µ), 2 ≤ ` ≤ h,

p`,`+1 = − (h− `− µ)(k + `− 1− µ)
m`

, 1 ≤ ` ≤ h− 1,

taking into account that m1 = k and mi = 1, i ≥ 2. From
µ /∈ Z, we have p`,`−1, p`,`+1 6= 0.

If y1 = 0, then from the first equation in Py = y we
obtain y2 = 0 (p1,2 6= 0). Next, in the similar way, the second
equation gives y3 = 0, and so on, until we obtain yh = 0,
i.e. y = z = 0.

Therefore, we obtain that x = 0, which is a contradiction.
This completes the proof.

IV. CONTROLLABILITY OF SYSTEMS MODELED BY
DNG(k, 1, . . . , 1; 1, . . . , 1)

Previously obtained results, in this section will be employed to
determine the number of leading agents in (I.2), where the sys-
tem is modeled by a chain graph DNG(k, 1, . . . , 1; 1, . . . , 1)
for k > h.

Theorem IV.1. Let G be a chain graph
DNG(k, 1, . . . , 1; 1, . . . , 1) with k > h. Then the system
(I.2) modeled by G is controllable with k − 1 co-neighbour
vertices in the role of leaders.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.3 - Page 3 of 4 ISBN 978-86-7466-930-3

Proof. The eigenvectors corresponding to the eigenvalue h of
the multiplicity k − 1 are of the form

v1 = (1,−1, 0, 0, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0)

v2 = (1, 0,−1, 0, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0)

...

vk−1 = (1, 0, . . . , 0, 0,−1︸ ︷︷ ︸
k

, 0, . . . , 0).

We first conclude that vertices {2, . . . , k} should be selected
as leaders. Moreover, any vector corresponding to µ = h is of
the form (t1, . . . , tk, 0, . . . , 0)

ᵀ. Any k−1 of these ti’s cannot
be zeros simultaneously. For any x1, . . . ,xl , l < k− 1 there
exists xs, such that xsxi = 0 for each i, 1 ≤ i ≤ l.

The remaining eigenvalues by Theorem III.1 are non-
integer and therefore their eigenvectors, by Theorem III.3
satisfy xi 6= 0, 1 ≤ i ≤ k. Now the statement follows by
Lemma I.1.

Example IV.2. For G = DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1) the
system (I.2) is 5 leader controllable. The leaders `1, . . . , `5 ∈
U1 are 5 of 6 vertices with repeated degrees, that are joined
to the followers v1, · · · , v5 as illustrated in Figure IV.1.

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

`1

`2

`3

`4

`5

Fig. IV.1. A 5-leader controllable system modelled by
DNG(6, 1, 1, 1, 1; 1, 1, 1, 1, 1).

V. CONCLUSION

In this paper we have covered the controllability of multi-
agent systems that are modelled by special class of bipartite
graphs: chain graphs. We have proved that if a chain graph
has only one repeated degree with multiplicity k, then the
system requires at least k − 1 controllers in order to be
controllable. In this way we positively addressed the questions
raised in [7], where the authors asked if there is a family of

graphs other than threshold graphs with one multiple degree
of multiplicity m for whose controllability at least m − 1
controllers are needed. Consequently, we expanded the known
classes of the controllable multi-agent systems. Taking into ac-
count that many engineering systems are modelled by graphs,
the obtained results are of particular importance in creating
new controllable systems, since the known structures are
limited (they mainly include paths, grids, cycles and circulant
networks). Another advantageous aspect is a possibility to
generate graphs with some desirable properties. One of them
is algebraic connectivity, i.e. the second smallest Laplacian
eigenvalue. It is a useful tool to measure the robustness and
synchronizations of the graphs. For the chain graphs that we
considered the algebraic connectivity is always in (0, 1) and
it approaching to 1 as the size of the graph increases. This
brings another benefit, since in general graphs the algebraic
connectivity usually decreases if the order of a graph is
increased.

ACKNOWLEDGMENT

Research of M.A and Z.S. is supported by the Science
Fund of the Republic of Serbia; grant number 7749676:
Spectrally Constrained Signed Graphs with Applications in
Coding Theory and Control Theory – SCSG-ctct.

REFERENCES

[1] T. Kailath, Linear systems, Prentice-Hall, Englewood Cliffs, 1980.
[2] N.V.R. Mahadev, U.N. Peled, it Threshold Graphs and Related Topics,

North-Holland, New York, 1995.
[3] K. Ogata, Modern Control Engineering, Prentice-Hall, Upper Saddle

River, 2002.
[4] F.K. Bell, D. Cvetković, P. Rowlinson, S.K. Simić, Graphs for which

the least eigenvalue is minimal, II, Linear Algebra Appl., 429 (2008),
2168–2179.

[5] Z. Ji, Z. Wang, H. Lin, Z. Wang, Interconnection topologies for
multi-agent coordination under leader-follower framework, Automatica,
(2009), 45(12), 2857–2863.

[6] A. Rahmani, M. Ji, M. Mesbahi, M. Egerstedt, Controllability of multi-
agent systems from a graph theoretic perspective, SIAM J. Control
Optim., 48 (2009), 162–186.

[7] S-P Hsu, Controllability of the multi-agent system modelled by the
threshold graph with one repeated degree, Systems Control Lett., 97
(2016), 149–156.

[8] X. Liu, Z. Ji, Controllability of multiagent systems based on path and
cycle graphs, Int. J. Robust Nonlinear Control, 28 (2016), 296–309.

[9] M. And̄elić, S.K. Simić, D. Živković, E. Dolićanin, Fast algorithms for
computing the characteristic polynomial of threshold and chain graphs,
Appl. Math. Comput. 332 (2018), 329-337.

[10] M. And̄elić, M. Brunetti, Z. Stanić, Laplacian controllability for graphs
obtained by some standard products, Graphs Combin., 36 (2020), 1593–
1602.

[11] K.Ch. Das, A. Alazemi, M. And̄elić, On energy and Laplacian energy
of chain graphs, Discrete Appl. Math., 284 (2020), 391–400.

[12] A. Farrugia, T. Koledin, Z. Stanić, Controllability
of NEPSes of graphs, Linear Multilinear Algebra,
https://doi.org/10.1080/03081087.2020.1778622

[13] A. Alazemi, M. And̄elić, K.Ch. Das, C.M. da Fonseca, Chain graph
sequences and Laplacian spectra of chain graphs, Linear Multilinear
Algebra, https://doi.org/10.1080/03081087.2022.2036672

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.3 - Page 4 of 4 ISBN 978-86-7466-930-3

Abstract— This paper discusses a system for generating and

distributing secret cryptographic keys based on the principle of

common randomness and discussion over an authenticated

public channel. The use of speech as a source of common

randomness is one possibility and to our knowledge the first for

this type of system. We consider different reconciliation

algorithms and compare them with experiments. Experimental

results show that it is possible to generate information-

theoretical secret keys with rates between 3 and 5%. This result

proves the practical feasibility of absolutely secret autonomous

cipher systems with speech control.

Index Terms—secret key; distillation; symmetric

cryptography; speech signal; reconciliation; privacy

amplification; secret key rate;

I. INTRODUCTION

The information-theoretical approach to the analysis and

synthesis of cipher systems came into focus with the

availability of quantum computers in the near future. The

classical result of this approach states that the entropy of

secret keys in a cryptographic system must be no less than the

entropy of plaintext [1]. As is well known, systems designed

in this way are resistant to the unlimited computing resources

of the adversary, and thus to cryptanalysis based on quantum

computers [2].

From the point of view of generating and distributing high-

quality secret keys, special attention is drawn to the

fundamental results of Alswede and Csiszar [3], Maurer [4],

and Csiszar and Narayan [5]. The basic idea of information-

theoretical approach in these results is to identify and use

mutually correlated signals available to legitimate parties.

Depending on the location of the source of common

randomness, there are two approaches, [3]:

(i) Secret key extraction from sources independent of

communication channels (source model),

(ii) Secret key extraction from existing communication

Jelica Radomirović is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia

and with Vlatacom Institute of High Technologies, 5 Bulevar Milutina
Milankovića, 11070 Belgrade, Serbia (e-mail:

jelica.radomirovic@vlatacom.com).

Milan Milosavljević is with Singidunum University, 32 Danijelova, 11000
Belgrade, Serbia (e-mail: mmilosavljevic@singidunum.ac.rs).

Aleksandra Krstić is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
amarjanovic@etf.bg.ac.rs).

channels (channel model).

The difference between these two models is how the parties

observe the initial sequence. While in the source model,

random source is controlled by nature, in the channel model,

one of the parties governs the input of a noisy channel

(independent of the main channel) while others observe the

output.

In this paper, we will analyze the possibility of extracting

cryptographic keys from a speech signal, applying an

approach based on the source model.

In Section 2, the basic blocks of the proposed secret key

generation system will be presented, in two variants: (i) when

the input is a speech signal and (ii) when the input is a

residual speech signal, filtered by an adaptive linear predictive

model [6].

In Section 3, the information and statistical characteristics of

this source will be analyzed and the key parameters of the

sequential procedure for extracting secret keys will be

identified, separately for each of the phases: Advantage

Distillation (AD), Information Reconciliation (IR) and

Privacy Amplification. -PA).

In Section 4 we present the results of the experiment of

obtaining secret keys for all pairs (Alice, Bob) of legitimate

participants for 5 speakers, one of which was chosen as an

eavesdropper (Eve).

The Conclusion discusses the upper limits of the rate of

generating secret keys and the possibility of further improving

the performance of the proposed system.

II. DISCRETE MEMORYLESS SOURCE

As illustrated in Figure 1, a source model for secret-key

agreement represents a situation in which three parties, Alice,

Bob, and Eve, observe the realizations of a DMS - Discrete

Memoryless Source (XYZ, PXYZ) with three components.

Fig. 1. Secret-key Agreement by Public Discussion from Common
Randomness [4].

Secret Keys Distillation using Speech Signals

and Discussion over Public Authenticated

Channel

Jelica Radomirović, Milan Milosavljević, and Aleksandra Krstić

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.4 - Page 1 of 4 ISBN 978-86-7466-930-3

The DMS is assumed to be outside the control of all parties,

but its statistics are known. By convention, component X is

observed by Alice, component Y by Bob, and component Z

by Eve. Alice and Bob’s objective is to process their

observations and agree on a key K about which Eve should

have no information.

Alice and Bob can exchange messages over a noiseless,

two-way, public and authenticated channel. That is, all

messages are overheard by Eve and the existence of the public

channel does not provide Alice and Bob with an explicit

advantage over Eve. The rules by which Alice and Bob

compute the messages they exchange over the public channel

and agree on a key define a four-stage key distillation

strategy, [4]:

1. Randomness sharing. Alice, Bob, and Eve observe n

realizations of a DMS (XYZ, PXYZ).

2. Advantage distillation. If needed, Alice and Bob

exchange messages over the public channel to process their

observations and to “distill” observations for which they have

an advantage over Eve.

3. Information reconciliation. Alice and Bob exchange

messages over the public channel to process their observations

and agree on a common bit sequence.

4. Privacy amplification. Alice and Bob publicly agree on a

deterministic function they apply to their common sequence to

generate a secret key.

The largest achievable key rate is defined as the key

capacity and is given by

 (1)

where I(X;Y) denotes mutual information between X and Y,

while I(X:Y|Z) denotes the same quantity conditioned by Z. In

the special case, when Eva is totally independent of Alice and

Bob, or equivalently, when Z is independent of X and Y,

maximal key capacity is equal to

 (2)

In this work, we use speech the signals of participants as

DMS of the proposed system, see Fig.2.

Fig. 2. Secret-key Agreement by Public Discussion based on the speech

signals obtained by pronouncing the word "Serbia".

III. SYSTEM ARCHITECTURE

As already mentioned, we will analyze two DMS, the first

one corresponding to the original speech signal, and the

second one corresponding to the residual signal. Residual

DMS is obtained after inverse filtering by an adaptive linear

autoregressive model, estimated every 10 ms of input speech,

see Fig.3.

Fig. 3. Two different DMS based on the same input speech signal

The general architecture of the system is given in Fig.4.

Speech input (or residual) is transformed into binary DMS by

a non-uniform quantization, based on estimating the

probability density function of input samples.

Advantage Distillation (AD) blocks are used to eliminate

the advantage that the eavesdropper may have over legitimate

parties. In that case, Eve knows more information about

Alice’s initial bit string, than Bob does. We will use the bit

pair advantage distillation/degeneration protocol [7].

Algorithms are based on the exchange of parity information of

2-bit blocks and the elimination of one bit of each block to

ensure security. After this step, the number of different bits of

the sequence is reduced. The number of non-matching bits of

the eavesdropper sequence decreases but much slower than

for the legitimate parties. The protocol runs for several rounds

until the sequences differ only in a few bits.

The Information Reconciliation (IR) is intended to correct

the remaining erroneous bits in the Alice and Bob sequences.

The most popular IR protocols are Winnow [7] and Cascade

[8] protocols. They are based on the exchange of block parity

information until the error of a certain block is detected. For

each block parity query, some bits are deleted to ensure

security. In the end, we get the same sequence on legitimate

sides that represents the secret key. Even though we tried to

ensure privacy by deleting potentially compromised bits, the

eavesdropper has still gained some information about the

secret key. To make the secret key absolutely secure, we

proceed to the next step of our system, privacy amplification

(PA).

In Privacy Amplification (PA) block sequences are

transformed such that m bits are discarded due to the

eavesdropper's knowledge. One of the possible

transformations is a hash function where n

is the length of a sequence before PA and r is the length after

PA, i.e., the length of the final secret key. It is common to use

so-called universal hash functions, such as random r x n

matrices, over GF(2), [9].

Fig. 4. Secret key agreement algorithm [3]

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.4 - Page 2 of 4 ISBN 978-86-7466-930-3

IV. RESULTS

Raw speech signal and its residuals, obtained from inverse

filtration of AR model of 10th order, were used for

experimental proof of the proposed system, Fig 5. Four

participants recorded the word ‘Srbija’ for two seconds.

Beginning. as well as the end of the word, were determined so

the initial signal is reduced to 0.6 second length. The

recordings were sampled at 44.1 kHz.

Fig. 5. Comparison of source signals

Normalized Hamming distance is an appropriate metric for

measuring the difference between two binary sequences.

Depending on the number of bits we use to quantize

continuous signal we get more or less similar sequences. That

directly affects how much information circulates over a public

channel and how long is the final secret key length. The key

rate is an indicator of how much of the sequence at the

beginning is useful

 .

In Fig 6. the key rate in function of normalized Hamming

distance is presented. In order to determine the optimal value

for the number of quantization bits, we try five different

values 6,8,10,12, and 14.

Fig. 6. Comparison of key rate for source signals. A and B denote legitimate

parties

From Fig.6 can be seen that residuals are closer to each other

than raw signals because of the corresponding higher key rate.

Fig. 7. How the number of quantization bits affects distance at the beginning

As shown in Fig 7., the highest rate is achieved for

normalized Hamming distance between 0.3 and 0.35, which

corresponds to 8 quantization bits.

Fig. 8. Dendrogram represented distance of all sequences

 In Fig 8. we use a dendrogram to show how close to each

other are the participant sequences. The dendrogram was

obtained as a result of hierarchical cluster analysis by the

Ward method [10]. To compare Cascade and Winnow

algorithms we conduct 4 experiments, 2 for each, that is one

for residual signals and one for speech signals. Results are

represented in table 1.

TABLE I
EXPERIMENTAL RESULTS

Final key size

Key rate

 [%]

W
in

n
o

w

Residual
10116.83

 ± 788.93

 4.78

 ± 0.37

Raw
 8670.30

 ± 1033.87

 4.10

 ± 0.49

C
as

ca
d

e
 Residual

 8432.24

 ± 624.18

 3.98

 ± 0.29

Raw
 6833.72

 ± 1433.26

 3.22

 ± 0.68

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.4 - Page 3 of 4 ISBN 978-86-7466-930-3

Based on the results we conclude that the Winnow

algorithm is a better choice for reconciliation because it gives

an almost 1% higher key rate. If we compare two DMS, the

one corresponding to the residual signal gives longer secret

keys due to a smaller normalized Hamming distance at the

beginning, for the same pair of sequences. Final hamming for

all sequences and all experiments toward the eavesdropper

after PA is ~0.5. In other words, all the information that

leaked through the public channel will not reveal anything to

the eavesdropper about the distilled secret key.

V. CONCLUSION

In this work we proposed a speech based secret key

agreement system with message transmission over a public

channel. The proposed system can distill secret keys from

speech signals, with the key rate of up to 5%, and with

negligible information leakage to an eavesdropper. This opens

up the possibility of practical realization of absolutely secret

cipher systems controlled by voice. Such systems can be used

both in the security services for critical information and

communication infrastructure of the government, as well as in

commercial applications.

Future work will include generalization in terms of the

largest achievable key rate and a testing of the proposed

system on more participants as well as more different spoken

words.

VI. ACKNOWLEDGMENT

The authors would like to thank the Vlatacom Institute of

High Technologies, where the research was done as part of the

project Prj_164.

REFERENCES

[1] Shannon C.E., “Communication theory of secrecy systems”. BSTJ, vol.

28, no. 4, pp. 656–715. October 1949.

[2] Wolf S., “Unconditional Security in Cryptography”, in Lectures on
Data Security: Modern Cryptology in Theory and Practice, Lecture

Notes in Computer Science, Berlin, 1999, vol. 1561, pp. 217–250.

[3] Ahlswede R., Csiszar I., “Common randomness in information theory
and cryptography, Part I: Secret sharing”, IEEE Transaction on

Information Theory, vol. 39, pp. 1121–1132, 1993.

[4] Maurer U., “Secret Key Agreement by Public Discussion from Common
Information”, IEEE Transaction on Information Theory, vol. 39, no. 3,

May, 1993.

[5] Csiszar I., Narayan P., “Secrecy capacities for multiple terminals”,
IEEE Transaction on Information Theory, vol. 50, pp. 3047–3061,

2004.

[6] Kovačević B., Milosavljević M., Veinović M., “Robust Digital
Processing of Speech Signals“, Springer, 2017.

[7] Wang Q., Wang X., Lv Q., Ye X., Luo Y., You L., “Analysis of the

information theoretically secret key agreement by public discussion”,
Security and Communication Networks, vol. 8, January, 2015.

[8] Reis A., “Quantum Key Distribution Post Processing - A Study on the

Information Reconciliation Cascade Protocol”. Master’s Thesis,

Faculdade de Engenharia, Universidade do Porto, Porto, Portugal, 2019.

[9] Bennett C.H., Brassard G., Crepeau C., Maurer U. “Generalized privacy

amplification”. IEEE Transaction on Information Theory, vol. 41, pp.
1915–1923, 1995.

[10] sklearn.cluster.Ward – scikit-learn 0.15-git documentation.
https://scikit-

learn.org/0.15/modules/generated/sklearn.cluster.Ward.html

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI1.4 - Page 4 of 4 ISBN 978-86-7466-930-3

https://scikit-learn.org/0.15/modules/generated/sklearn.cluster.Ward.html
https://scikit-learn.org/0.15/modules/generated/sklearn.cluster.Ward.html



Abstract—With the introduction of voice recognition and its

support by various research groups, it became possible to add

voice commands to different devices in use. We are seeing them

on PCs, phones, and tablets. This paper presents a solution to

order and control set-top box devices and TVs based on Android

OS. It is a cloud-based solution supported by Google API for

voice recognition.

Index Terms—set-top box, android, voice commands, voice

recognition, TV voice commands, Actions on Google, Android,

Google Assistant, Dialogflow, Firebase.

I. INTRODUCTION

Virtual assistance is becoming more popular with artificial

intelligence and machine learning advances. Particularly with

voice recognition available on PC and even mobile devices,

with capabilities to support more languages, not just English.

Popular operating systems come with support for virtual

assistance and voice recognition as one service. There is

Cortana on Windows operating system. In iOS, there is Siri.

For Android devices and Google products, there is Google

Assistant. Additionally, Samsung has Bixby, and Amazon has

Alexa.

All mentioned virtual assistance is based on cloud

architecture that employs the internet. Some solutions are

standalone and work reasonably well in a narrow field, but

cloud-based solutions give better results for general-purpose

tasks.

This paper will investigate the possibilities of adding virtual

assistance to set-top box devices to speed operations with

DTV sets and improve user experience. We have selected an

Android-based device with a remote controller that supports

voice recording [1]. Early work on the subject was done with

[1] and [2]. More similar work was done on narrow areas for

content playback on set-top box devices by Petrovic et al. [3]

and Visekruna et al. [4], and Lazic et al. [5].

II. SECTION TITLE (E.G., THE METHOD)

Google Assistant is Google's virtual assistant available on

mobile phones, smart home devices, TVs, cars, etc. It has

Jovana Simić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Jovana.Simic@rt-tk.com)
Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanović@rt-tk.com)

Nikola Vranić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Nikola.Vranic@rt-tk.com)

artificial intelligence and enables two-way communication in

voice communication and text messages with the user. It can

browse the Internet, set alarms and events, access device

settings, display user account information, etc. It also supports

a lot of functionality for smart homes. For example, the user

can control lighting, temperature, TV, and other items in the

house. To prevent the service from being constantly active,

the recognition of the keywords "OK, Google" and "Hey,

Google" was introduced, after which the service became

active. After activating Google Assistant, the voice command

recording begins, and it collects an audio message which is

further processed. The resulting response is reproduced

depending on the device on which Google Assistant is used,

e.g., in the case of Google Home devices, the answer is in the

form of audio sound, while when using a smartphone or TV, a

text record is also obtained [6]. If you want to run Google

Assistant on an Android TV, you need a microphone to record

your voice, integrated into the remote control [6].

Actions on Google (AoG) is a platform that allows you to

expand your personal Google Assistant by adding your

services called Actions. To enable device management,

Action has been implemented. Suppose you want to access the

Action described in this paper. In that case, you need to tell

Google Assistant: "Talk to True TV" or "Ask True TV", after

which he asks the AoG platform to run the application, AoG

sends a request to the web service and receives a response

forwards to Google Assistant, which displays the answer to

the user. Furthermore, Google Assistant forwards the user

input directly to the Action, and the Action responds directly

to the Assistant.

When creating an Action, it is also possible to use the

Dialogflow platform to simplify the understanding of user

input. The Dialogflow agent translates user input during a

conversation into structured data that applications and

services can understand. As the call center, they are trained to

handle expected conversation scenarios. The platform itself

provides the ability to reply with static responses. If you want

to respond with dynamic answers and additional logic, it is

possible to implement a web service. In this case, Dialogflow

is a proxy between Actions on Google and the web service, as

shown in the figure. Instead of sending the request directly to

the web service, AoG sends it to Dialogflow. Also, the web

service sends a response to Dialogflow, which forwards it to

AoG.

The answer must be returned to the user within 10 seconds.

Otherwise, the request will expire. Also, the response must be

less than or equal to 64 kilobytes. Dialogflow processes the

user's input, and it sends an HTTP POST request to the web

One solution for voice commands on Android

based STB

Jovana Simić, Đorđe Glišić, Nikola Vranić, Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.1 - Page 1 of 4 ISBN 978-86-7466-930-3

service, which is set as a function on the Firebase platform.

The Cloud Functions for Firebase service automatically starts

the function when an HTTP request arrives.

Fig. 1. The diagram shows the path that requests go from Assistant through

the Dialogflow till the Fulfillment and response traveling back to the

Assistant.

The Actions on Google, Dialogflow, and Firebase

platforms are well integrated, as seen in Fig. 2. The figure

shows a simple interaction between the end-user, the assistant,

Dialogflow, and the web service built in the cloud, like

Functions for Firebase and the Firebase Real-time Database.

The user enters his request as a voice command and starts

the assistant himself. The assistant converts the voice

command into text and starts the Dialogflow searching for the

initial action (Welcome intent). Dialogflow uses machine

learning to map text to intent and to isolate recognized entities

(such as TV channel, TV channel number, time, etc.).

Dialogflow triggers a web service, implemented as Cloud

Functions for Firebase, sending it a JSON request that

contains all the necessary information from the text. The web

service processes the JSON request and implements logic

(checks the Firebase Real-time Database) to respond to the

assistant (or Dialogflow). Device Assistant converts the

answer to speech and display (for devices that do not have a

screen).

Fig. 2. Voice command workflow from Actions on Google, Dialogflow to

Firebase fulfillment web service and back.

III. IMPLEMENTATION

This section describes one way to train and integrate

Google Assistant. The Dialogflow agent needs to be trained

first. The intent has been created for each supported

command, in which it is necessary to enter a large number of

phrases that the agent will understand, as shown in Fig. 3.

The pairing of the Action user and the STB device user was

solved using a Google account, precisely his email address.

To be able to manage the STB during the first launch of the

Action, it is first necessary to link the account with the

Action. The AoG platform provides the Google Sign-In

option, the easiest way to connect and create accounts with the

Action. The Action may request access to the user's Google

profile, including the user's name, email address, and profile

picture. Of course, you need to ask the user if he agrees to

access his Google profile.

Fig. 3. Training phrases for specific action in Dialog flow and the required

parameters defined.

After recognizing the command by the Dialogflow

platform, it is necessary to send a signal to the TV application,

which should execute the given command. Therefore, for each

intent in the agent, an intent handler has been created in the

web service. The operator first checks whether the user has

linked his account with the Action. If this is not done, the user

is first asked to link his account, and the user receives a list of

suggested cards with commands for linking the account.

Otherwise, the triggered command is entered in the Firebase

Realtime Database database in a node whose email field value

equals the user’s email address accessing the Action. If such a

node does not exist, the user with that email address is not

logged in to any TV application. If there is, wait a while for

the TV application to process the command and return the

answer to be displayed to the user.

As already mentioned, the pairing of users of the Action

and users of STB devices was done through a Google account.

Therefore, the AccountHandler class is implemented in the

TV application, which detects adding and removing accounts

from the application. The class diagram of the

AccountHandler class is shown in Fig. 4. Each account should

have its node in the Firebase Realtime Database. Each account

is associated with an object of the type VoiceHandler given in

Fig. 5, which is used to detect database changes and execute

commands.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.1 - Page 2 of 4 ISBN 978-86-7466-930-3

Fig. 4. Account handle class diagram.

When a new account is added to the TV application, it is

necessary to add a new node to the database for that account

and set the application to listen for changes on that node, for

which the VoiceCommand class is used. In the class

constructor, a reference to the root node of the database is

retrieved, and in the subscribe() method, a listener is

registered to the node in the database for which changes need

to be detected.

Fig. 5. Voice command class diagram.

IV. RESULTS

A vital result of the presented work is that the voice

commands apply to set-top-box devices with acceptable

latency. Additionally, the phrase database could be upgraded

without changing the actual code on any STB device.

Testing was performed via the Google Assistant application

on a mobile device. The response time of the Action from the

user's input to the return of the response to the user was tested.

The tests were performed under normal conditions, under

certain noises, using commands in English.

The table gives a comparative overview of the response

time for commands implemented in this system. Response

time averages 1 to 2 seconds, depending on the command. As

shown in Table 1, the most time-consuming commands are for

displaying information about events. These timings are

comparable with the times it takes for users to do those

actions using RCU. Key benefits could be seen in more

complex scenarios, like adding services to favorite lists or

scheduling PVR recordings based on the TV show’s name for

a specific period. Those cloud-based services will outperform

manual user interaction with the graphical user interface.

TABLE I

VOICE COMMANDS AND RESPONSE TIME

Command for set-top box Response

Time[s]

Change to the next channel ~1,174
Change to the previous channel ~1,172
Change to a channel with a specific

name
~1,195

Change to a channel with a specific

number
~1,222

Complete tone reduction ~1,156
Restore volume before complete mute ~1,190
Tone amplification ~1.075
Mute the tone ~1,199
Increase the tone to maximum ~1,036
Check if the STB is in sleep mode ~1,353
View information about the current

event on the current channel
~1,535

View information about the current

event on a specific channel
~1,599

View information about the next event

on the current channel
~1,469

View information about the next event

on a specific channel
~1,445

Setting reminders ~1,169

V. CONCLUSION

In this paper, we have implemented a proof of concept for

the voice commands on STB. For more implementation

details refer to works [5], [6], and [7]. As with any cloud-

based service, it relies on the internet and its stability. Further

work shall be done to benchmark latency depending on the

internet connection speed, location, and type of connection

(WiFi, cable, mobile). It makes that operators supporting this

feature offer stable enough internet.

If a set of basic commands is appropriately selected to

cover all actions that the user can execute, then a cloud

solution can make a chain of commands based on the user's

voice request. Dialog flow cloud platform could process

arbitrary complex requests that could be transformed and

fulfilled as a series of actions. This hides a real benefit, as

requests like “make a list of my top five sports channels and

record NBA finals on internal disk” could be executed.

Additionally, requests like “Find me a movie with Tom

Hanks for Saturday evening” contains more than just a request

for STB. They hold user preferences so that operators can

train recommendation systems. It opens up a vast field of

opportunities as well as privacy concerns.

It does not end with voice commands for STB. It can be a

command supported by a third-party application for food

delivery or a calendar application.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.1 - Page 3 of 4 ISBN 978-86-7466-930-3

REFERENCES

[1] A. B. Garayalde, MSc thesis, “Speech Control & Media Sharing for

Media Centers”, ENST Bretagne France, 2007

[2] KH Lin, CH Lin, KH Chung, KS Lin , “A Compressive Sensing-based
Speech Signal Processing System for Wearable Computing Device in

IPTV Environment”, ICMT 2013

[3] D. Petrović, M. Zeković and N. Vranić, "One solution for extension of
the system for recording multimedia content on Android based devices"

2017 25th Telecommunication Forum (TELFOR), Belgrade, 2017, pp.

1-4.

[4] U. Višekruna and M. Savić, "Integration of Google Assistant in Android

Application for Voice Control of Media Playback," 2018 26th

Telecommunications Forum (TELFOR), Belgrade, 2018, pp. 1-4.
[5] A. Lazić, M. Z. Bjelica, D. Nad and B. M. Todorović, "Google

Assistant Integration in TV Application for Android OS," 2018 26th

Telecommunications Forum (TELFOR), Belgrade, 2018, pp. 420-425.
[6] E. Nan: „Upravljanje pametnom kućom uz pomoć Google asistenta”,

University of Novi Sad, Faculty of Technical Sciences, Novi Sad, 2017.

[7] J. Simic, “Realizacija glasovnih komandi za uredjaj baziran na
operativnom sistemu Android”, UB ETF, Belgrade, Serbia, 2022

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.1 - Page 4 of 4 ISBN 978-86-7466-930-3



Abstract— Digital television (DTV) software runs on various

hardware platforms, from low-cost low-performance devices to

high-end devices that could compare with modern smartphones

and PC configurations. The development quality depends on the

tools available for the target platform. A new approach was

taken to improve development by moving to the PC platform to

avoid this dependency. The benefits are apparent, but it comes

with some constraints. Typical examples are components

available for target platforms but not PC platforms for security

and legal reasons. One such component is the conditional access

system (CAS) and digital rights management (DRM)

components. This paper will present one solution to simulate

conditional access (CA) in software without vendor CA libraries

and support in hardware. The aim is to get the ability to test and

verify various parts of DTV software that depend on CA

functionalities.

Index Terms— digital television, simulation, conditional

access, DTV stack test environment.

I. INTRODUCTION

A device that can reproduce digital television needs to

comply with some DTV standards (DVB, ATSC, ISDB, etc.).

Often it needs to support some content protection mechanism

(encryption, signing, etc.). Additionally, the device needs to

have a certain number of standard features and a few unique

features dictated by the operator that will be available to the

user.

In developing DTV software, specific components are

delivered from third parties, like a software development kit

(SDK) for the target platform or CA libraries for content

protection. Content protection certification is an essential step

in the development life-cycle, and DTV software is adopted

according to the specification documents and APIs delivered.

Upon development completion, the application is verified

using several test suites that prove it behaves in the required

way. This process repeats for every new target platform.

The DTV software development is tightly coupled with the

target platform. Depending on the platform and its supporting

packages, it may be impractical to develop a more complex

project using them as a development platform. Instead, one

way to overcome those difficulties is to develop on more

Milan Petrović – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Milan.Petrovic@rt-tk.com)
Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

Uroš Jokić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Uros.Jokic@rt-tk.com.

suitable platforms. That platform should support at least

logging mechanisms, the ability to re-write persistent

memory, access to hardware debuggers, and good enough

software packages to use those features. In practice, this is not

the case, and almost always, given components are missing,

and software packages are always behind the state-of-the-art

counterpart packages available for PC. Selecting a more

applicable platform instead of the target one for development

is not applicable if the target CA library has different

requirements (hardware or software) compared to its

counterpart on a development platform.

For DTV software to be as robust as possible, there was a

need to implement support for different CAS vendors. They

shared core concepts for content access rights, content

protection, operator box management, operator messaging to

users, and other customized product and feature protections.

The CAS vendors’ APIs significantly differ, although

concepts are very similar. The differences between versions

from the same vendor may not be compatible. Older libraries

tend to have fewer restrictions, while newer versions have

more demands and APIs to support, as new scrambling

algorithms are added, and more security protocols are

employed. It is necessary to have a level of abstraction in

DTV middleware to adopt those changes and differences.

As a result, the first DTV simulator was developed on a PC

platform [1]. It aimed to support the development of a

graphical user interface. It became clear it could be used for

implementing DTV middleware features as well. Those

features were related to the DTV standard. To support it, the

middleware test environment (MTE) [2] was created to test

and verify different parts of the software on a PC platform

using white box testing [3] [4]. This approach could not cover

the code developed for a CA subsystem and the application

code that was connected and dependent on that CA

subsystem.

This paper aims to discuss paths that could be taken to

overcome those obstacles. It gives one solution that is

implemented and tested to prove the concepts. We could not

find any relevant work on this topic. Closes to the work are

discussions on testing approaches made in [5], [6], and [7].

Section two details the challenge and introduces the DTV

system’s architecture. Section three provides more

information on the implementation and final solution. Section

four explains verification and test results. Section five

concludes the work.

One solution for simulating conditional access

in DTV Software on PC platform

Milan Petrović, Đorđe Glišić, Uroš Jokić and Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 1 of 4 ISBN 978-86-7466-930-3

II. PROBLEM STATEMENT

The CA vendor dictates two primary CA integration

approaches depending on the target platform and selected

operating system. If the target platform runs an operating

system (OS) that does not support processes, only threads

(tasks), the architecture looks as in Fig. 1. Here DTV software

consists of OS, software development kit (SDK, drivers),

hardware abstraction layer (HAL), middleware, and

application layer. The application depends on middleware,

and middleware depends on the abstraction layer (HAL) API

that abstracts OS and SDK APIs [8].

The middleware and application layers contain all the

business logic, whereas the remaining layers, like HAL, are

porting layers designed to be very thin. Application is oriented

toward user interface and feature logic, whereas middleware is

oriented toward controlling hardware, supporting DTV

standards, and interacting with CA subsystems.

 Fig. 1. Typical architecture of DTV software in case of OS where processes

are not supported.

The module depicted as CA Wrapper is the actual module

seen by the DTV middleware. It interacts with the middleware

and application-level modules. It behaves like a proxy

between the DTV stack and the existing vendor-specific CA

subsystem. The conditional access subsystem consists of the

kernel part where the logic is implemented and the hardware

abstraction part (CA HAL) used as a glue layer between the

CA kernel and underlying OS and SDK APIs. In this

architecture, middleware HAL acts like a resource manager

and has the information about allocated resources and tasks

running in the system. This allows better resource

management compared to the second approach.

The second approach is required with the OS supporting

processes, like Linux and Android. As depicted in Fig. 2, the

CA kernel and CA HAL depend directly on the underlying OS

and SDK. They are running in a separate process. If the DTV

stack is unstable or crashes, it does not affect the CA kernel.

This approach ensures that the rest of the system never

compromises CA. Still, the CA wrapper serves as a proxy

between the CA kernel and DTV stack. It is up to the SDK

vendor to ensure that multiple clients can access the same

hardware peripherals. If not provided, some features like PVR

may need to be carefully designed to ensure that components

do not overlap in responsibilities.

Fig. 2. Typical DTV software architecture in platforms with OS supporting

processes.

We need to add CA subsystem support on a PC platform to

test CA-related features. There are two possible paths:

1. Implement CA wrapper replacement module

2. Implement CA kernel replacement module (supporting

CAS API)

The first solution gives us the ability to have a general CAS

subsystem, irrespective of the actual CAS vendor. However, it

puts aside CA wrapper code that interacts with the existing

CA subsystem. Changes in the requirements of the CAS do

not directly affect this solution.

The second approach is to develop the CA kernel module

and the CA HAL module. It will preserve the CA wrapper

module and allow it to be appropriately tested. However, this

approach is considerably more time-consuming and has open

questions related to all behaviors implemented in CA kernel

API.

Our aim is not to implement content protection as software

or hardware encryption. That is transparent to the middleware.

Middleware only knows that content is protected and that the

CA subsystem must start. CA subsystem is entirely

responsible for the content decryption.

Encrypted content is never used in testing on PC because it

has a complicated decryption procedure requiring specialized

hardware protected by patents and legal documents. Only

unencrypted content is used. This type of content can be

generated using open-source tools like TS-duck [11] and

video content available.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 2 of 4 ISBN 978-86-7466-930-3

III. IMPLEMENTATION

We have decided to take a hybrid approach given the above

pros and cons. We implemented CA wrapper API on the DTV

stack side as it already exists, allowing the remaining parts of

the system to be unaware of the difference. CA kernel is

partially shifted to the Middleware Test Environment (MTE).

It is a framework for testing the DTV stack on PC.

The DTV software is running as a standalone executable. It

has a middleware hardware abstraction layer (HAL) adjusted

for the PC platform. Hardware devices are simulated in HAL

using SDL [9] and FFmpeg [10] open-source libraries. The

test environment is written in Python and communicates with

the PC simulator using interprocess communication,

particularly sockets. The test environment supported remote

control, logging, and execution of automated tests. It can

fully control the PC simulator, user input, and DTV stream

input. Automated tests are supported by different APIs that

are implemented in MTE. More about it can be found in [1]

and [2] papers.

Fig. 3. DTV software architecture with middleware test environment (MTE)

supporting conditional access head-end (CA HE)

As given in Fig. 3. the middleware test environment

communicates with the PC simulator through the HAL layer

that implements interprocess communication. A module CA

wrapper uses send/receive routines from HAL. This is to

mimic actual data flow, where CA information comes from a

demultiplexer connected to the data stream. It will parse

received commands and act accordingly. One typical example

is the zapping procedure, where service is changed from one

to another. In that case, middleware notifies the CA wrapper

who needs to check access rights for that service in the

database, sharing the data about the service being connected

to and additional information about tracks to be descrambled.

The module checks access rights in the database and responds

to middleware. In our work, descrambling is not implemented,

as it does not add any test value since all the descrambling is

done in hardware, and none of that logic is done in the DTV

stack.

Module CA wrapper is responsible for maintaining the CA

kernel database. It exchanges data with the remaining parts of

the DTV system. The middleware test environment can get

the CA kernel database and modify it by sending appropriate

commands. It communicates with a PC simulator using

conditional access head-end (CA HE).

Following features (commands) we implemented in the CA

HE subsystem and CA wrapper:

1. Device activation in a network

a. Smart card

b. Virtual smart card

2. Product access rights

a. Checking rights

b. Adding rights

c. Removing rights

3. Service access rights

a. Checking rights

b. Adding rights

c. Removing rights

4. Content protection

a. Covered fingerprint

b. Periodic fingerprint

c. Permanent fingerprint

5. Mails

6. Changing service bouquet

7. Forced software update

8. CA notification messages

a. Periodic messages

b. Permanent messages

c. User acknowledges messages

In Fig. 4, a window containing the setup for generating CA

messages is presented. This CA HE submodule of MTE

supports creating test cases. The test case is a message with all

the parameters for that particular command. This way, the QA

tester or developer does not have to enter test commands each

time manually. Instead, he can select test cases saved as an

XML file.

Fig. 4. CA HE main window consists of three parts, the user can re-use
existing test cases or make new CA commands and send them in bulk.

CA HE main window consists of three parts, the left part

reserved for displaying a tree of saved test cases, the middle

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 3 of 4 ISBN 978-86-7466-930-3

part consists of a panel for generating CA commands, and the

right part for listing generated commands ready for sending.
The middle panel for adjusting access rights for particular

services is depicted in Fig. 5. There can be a list of services

available on the box and the access right for that service.

Fig. 5. The middle panel of the CA HE main window, where users select

options to modify the service database's access rights.

The service access rights database is saved on the simulator

side at runtime. The database can be exchanged between the

simulator and MTE upon request sent from MTE. Once they

are synced, MTE can send commands related to services

access rights to the simulator. When the CA wrapper module

receives a command, it processes the message, updates the

database and saves it in an XML document. The CA state

simulated in the CA wrapper can be restored from the XML

file upon simulator restart. With this approach, the simulator

is a standalone application, and MTE can communicate with

it, but there is no dependency on MTE.

IV. VERIFICATION AND RESULTS

To test prepared CA subsystems, we have created a set

suite that covers all supported types of messages that could be

sent to the CA or received from the CA module by the DTV

middleware [4]. We have observed that the code is executing

correctly and that middleware behaves in the same manner as

it is expected in the production environment.

In the case of sending chains of commands, we have

observed new failure cases that were not covered by the DTV

middleware and application. Those cases involve low

probability cases like at the same time receiving a fingerprint

message and a CA message. Those cases uncovered several

combinations that could not be adequately tested on the

development side, the operator's production live network or

the lab network. They are not simple to prepare as a test case

in those environments.

Scenarios that combine user interaction, CA signaling, and

DTV signaling can reveal hidden bugs. Those bugs could be

reported as software malfunction in a production. Yet those

issues are impossible to reproduce manually unless the exact

preconditions are known, which is rarely the case. Troubled

combinations may be of low probability, but in networks with

many end users, the chances that the failure will be seen and

reported are very high. Still, the ability to troubleshoot it

efficiently is very poor.

V. CONCLUSION

This paper focused on expanding capabilities for testing

DTV software on a PC platform. It allowed more complex test

cases to be executed that would be very hard or impossible to

replicate in a network with real hardware. A further way of

improving the solution is making a CA API on the MTE side.

That could allow the creation of automated tests for testing

application behavior as a response to CA events and user

interaction.

Work could be extended toward implementing specific CA

vendors’ API allowing the whole DTV stack to be tested for

required functionalities. It will increase the coverage of

testable code to almost 100%. But gains versus cost ratio for

doing this may not prove as an appropriate step. Another

improvement can be made towards implementing some

descrambling capabilities.

REFERENCES

[1] A. Šuka, Đ. Glišić, M. Jovanović, “One solution of DTV simulator for

PC platform“, TELFOR, 2019

[2] M. Petrović, Đ. Glišić, M. Jovanović, “One solution for testing
embedded DTV software on the PC platform”, ETRAN 2022,

[3] S. Nidhra1, J. Dondeti, “BLACK BOX AND WHITE BOX TESTING

TECHNIQUES – A LITERATURE REVIEW”, IJESA, Vol.2, No.2,
June 2012

[4] I. Jovanovic, “Software Testing Methods and Techniques”, IPSI TIR,

2009
[5] T. Tarkan, “User-driven Automatic Test-case Generation for DTV/STB

Reliable Functional Verification”; IEEE Transaction on Consumer
Electronics, vol.58, no.2, pp. 587-595, ISBN: ISSN:0098-3063, 2012

[6] Cabot Communications, “Automated testing of digital television

devices“, accessed 2022, http://www.cabot.co.uk/solutions/robotester-
white-paper/at_download/CB.pdf

[7] M. Kovacevic, B. Kovacevic, D. Stefanovic, V. Pekovic “System for

automatic testing of Android based digital TV receivers “, INDEL 2014,
Banja Luka

[8] G. Miljkovic, “DTV Linux Device Abstraction for Embedded Systems”,

ISCE, ISBN:978-1-4244-6673-3, 2010
[9] Simple DirectMedia Layer, https://www.libsdl.org/, accessed May 2022

[10] FFMPEG library, https://ffmpeg.org/, accessed May 2022

[11] TSduck, https://tsduck.io/, accessed May 2022

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.2 - Page 4 of 4 ISBN 978-86-7466-930-3



Abstract—In an embedded device industry, applicable

software is developed for a particular platform and device.

Reusability, functional correctness, and quality control of the

software are of great importance. The digital television industry

is no different. Moreover, it requires compliance with device

safety, security, and functionality standards. Compliance testing

is often done with near-end products, as most functionalities

require that all components be put together. Secondly, most

development is done using target platforms that often lack tools

and add significant delays in development. This paper gives one

solution for testing the embedded DTV software on PC. The

authors give a road map for developing testing environment to

safeguard the product's quality. It allows early-stage testing by

the development team and helping the QA team test the end

product.

Index Terms— automated testing, DTV, middleware test

environment, python, OpenCV, tesseract.

I. INTRODUCTION

In embedded devices, hardware capabilities vary in many

areas. Available RAM, platform instruction set, supported

peripherals, hardware accelerators, and dedicated specialized

hardware blocks. On the other side, depending on the product

or manufacturer, there are support variations, incomplete

documentation, and very little support for the supporting

development software packages.

On the other side, there is a problem with integrating third-

party components. They may or may not come with the test

suite or test application. In the case of open-source software,

source code is available, but it was written for specific

operating systems (OS), sometimes depending on unique OS

features.

A common component for all devices is DTV middleware

software. It grows with new requirements, new standards, etc.

Testing is always pushed to the end product, verified against

predefined sets of tests. The reason behind it is that many

features depend on all components being put together, and it

is tough to test partially completed software [1].

Additionally, suppose such a DTV stack is inherited from

another source without a test suite. In that case, it is always

Branka Ševa – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Branka.Seva@rt-tk.com)
Đorđe Glišić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanović – RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

Uroš Jokić – RT-RK Institute for Computer Based Systems, Novi Sad,

Srbija, (e-mail: Uros.Jokic@rt-tk.com.

commercially unjustifiable to spend engineering time

preparing a test suite that will verify the DTV stack. Instead, it

is pushed to develop the end product and confirm its

functional compliance [2].

Commercially available solutions are focused on testing the

end product. Depending on the solution, it may offer hardware

compliance testing or functional testing. Some tools like

Intent+ [3][4] offer automated and manual testing. Automated

testing is accomplished using dedicated test suite applications.

Suitest [5] offers visual preparation of tests. Other solutions

provide general-purpose languages like Stb-tester [6]. Others

provide APIs like black-box-testing (BBT) API from Intent+.

They mainly focus on automating the remote controller,

capturing the screen, recording audio, and processing it using

a test suite.

As a result of described practices, software products’

quality may be at a reasonable level, but the quality of the

code may be poor. Reuse of already developed code is very

inconvenient across projects. Feature development may slow

down as maintaining code becomes more and more expensive.

Products may suffer from bugs that have low repeatability

rates and high severity. In such cases, black-box testing [7] is

not suitable. It is necessary to implement white box testing [8]

procedures.

Section two details a problem and describes the system’s

architecture. Section three explains the proposed solution and

provides implementation details. Section four discusses the

results. In section five, we conclude our work.

II. PROBLEM STATEMENT

In the development stage, verifying a new feature is time-

consuming. Platforms with limited hardware capabilities offer

unique tools to write software to devices. It may need from 30

seconds up to 5 minutes to run the software. Often those

platforms do not support hardware debuggers.

A typical application in DTV consists of the following

components:

1. Application layer (APP)

2. Middleware layer (MW)

3. Hardware abstraction layer (HAL)

4. Platform-specific SDK (SDK)

5. Operating system (OS)

Platform-specific SDK is a set of libraries and APIs that

provide access to platform hardware components and allows

control over them. This layer and the OS layer are closed for

the development team. Also, those layers are highly platform-

specific, so they cannot be ported to other platforms without

One solution for testing embedded DTV

software on the PC platform

Branka Ševa, Đorđe Glišić, Uroš Jokić and Marija Jovanović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 1 of 4 ISBN 978-86-7466-930-3

considerable effort.

The hardware abstraction layer (HAL) provides a defined

API [9] that exposes all necessary functions for upper layers

(middleware and application) and abstracts platform devices

and operating systems. It is implemented again with every

new platform. It is common to have abstraction layers for

every portable software and a test suite that verifies that the

layer is ported correctly.

The middleware layer provides support for the DTV

standard and is responsible for all functionalities in the DTV

application. It consists of modules controlling hardware

service change, acquiring information from DTV signal

tables, maintaining program database, service lists, event

information database, user interface engine, etc. Those

modules are often interdependent. It is not simple to decouple

one from the rest of the system and check their correctness

using white box testing (e.g., unitary testing).

An essential component of the middleware layer is the

conditional access system (CAS) or digital right management

(DRM) system. It provides access to protected content. It is

also a closed component that comes with the pre-defined test

suite.

The application layer covers the graphical user interface

and specific logic for the user interface. It is connected to the

middleware layer and highly depends on it. Black-box testing

mainly verifies this layer.

 Architecturally higher-level components depend only on

lower layer components. Key components that are developed

are the application layer and middleware layer. Hardware

abstraction layer API stays the same across different target

platforms. We want to create a system that will test those two

main components.

The goal is to prepare a software test environment that can

support:

1. Functional tests as end-user

2. Scenario tests as end-user and operator

3. Monitoring and testing internal state

4. Code coverage

 Functional tests cover black-box testing, where

implemented features are verified [1]. Examples are video

presence, audio presence, switching service, changing

volume, displaying graphics, and event information presented.

Besides core DTV tests, additional tests unique to the

application have to be supported, like the position of some

element on the screen, at the right time, for the correct period,

etc.

Scenario tests verify DTV software in more complex cases.

Those use-cases involve changing information in DTV tables

signaling, new commands from the CAS/DRM system, or

new data from other custom protocols that affect the device’s

state. Tests shell cover application responsiveness to the user

interaction and user interface changes based on the system's

internal state.

The monitoring system needs to monitor the execution and

report critical situations. It should consist of a logging

mechanism and software/hardware debuggers to automate the

testing of internal states by inspecting calls to specific

modules, APIs, and execution paths.

Code coverage gives insight into the test suite coverage of

the existing code. If test coverage is low, it may mean that the

test suite has to be expanded to cover some exceptional cases

or that some source code is unnecessary occupying space

(dead code). This work did not cover code coverage testing.

Due to the complexity of this feature, implementation details

are not covered in this paper.

The test environment defined would be capable of

inspecting every module for its dependencies and behavior.

Afterward, proper refactoring will allow white box testing

(unitary testing, scenario testing).

III. IMPLEMENTATION

We decided to create a test environment to run and test

DTV software on a PC. The reason behind it is to use current

and future state-of-the-art tools. The first step was to port

DTV software to the PC platform. It was done by porting the

HAL layer. More details about it can be found in [10]. It

supports working with actual transport stream data and makes

DTV middleware fully operational. Compared to the

commercial product, the only difference is that it does not

support targeted CAS, as it is proprietary, and its libraries are

only delivered for specific target platforms. Work is done to

overcome this, using simulated CAS. Due to the complexity

of this feature, implementation details are the subject of

another paper and are not given here.

Fig. 1. Key components of DTV software running as part of the PC simulator
are on the left side. On the right side are components of the MTE.

We decided to run separate processes for the test

environment and DTV simulator. The DTV application runs

stand-alone as it would be on the actual device. It allows us to

have more options for the middleware test environment

(MTE).

Communication with the PC simulator is done using

TCP/IP. The communication protocol is designed to be

minimalistic. The aim was not to disrupt the dynamics of the

DTV middleware execution compared to its expected

dynamics on the device. The protocol covers commands from

MTE to PC simulator and data from PC simulator to MTE.

Commands consisted of remote controller (RCU) events and

requests for device state (screen capture, audio status, and

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 2 of 4 ISBN 978-86-7466-930-3

similar).

We have decided to implement a test environment in

Python language. We saw that this language is widely used in

automation testing. Two STB automation test suites [4][5]

already support Python scripting. It has extensive library

support for user interface, computer vision, text recognition,

communication protocols, etc. It is cross-platform, so we

could design a tool to run on different platforms. It supports

documenting code and a capable development environment

(IDE).

We have selected the following frameworks to implement

MTE:

1. wxWidgets - UI library (platform-independent,

supports all major operating systems)

2. openCV - cross-platform library for computer

vision, used for image manipulation and

comparison

3. Tesseract - OCR engine for text recognition and

extraction

The application was developed to support four different

APIs:

1. Remote control API

2. Logger API

3. Black-box testing API

4. Development API

Remote control API covers control over RCU and sends

commands to the PC simulator the same way a user would do

using a remote control unit (RCU). To send commands, a

TCP/IP protocol is used. On the side of the simulator, an

existing module for receiving RCU input is adapted to receive

TCP/IP commands from MTE.

Logger API is responsible for collecting log information

from remote PC simulators using TCP/IP protocol. The

existing logging module was improved to send log

information over TCP/IP and the serial console on the

simulator side. It supports filtering and searching for logging

information.

Black-box testing API is a set of predefined APIs

implemented on top of RCU API and an additional acquiring

protocol for collecting screen output. It is aimed to be used for

writing test cases. We selected to support the commercial

black-box testing (BBT) API as part of Intent+. It was

available to compare with the framework against an existing

set of automated tests. Other solutions like Stb-tester API [5]

are similar in API and exposed functionality.

Development API is created to support debugger

integration in the MTE framework. It is implemented to

support GNU GDB compatible debuggers. The framework

can run the debugger and start the application or run the

debugger and connect to the remote debugger server running

the application (Fig. 2). This API makes it possible to start

debugging software and send commands like setting

breakpoints and watchpoints, printing values, etc. In this

scenario, MTE spawns two processes, one for the GDB server

that starts the PC Simulator and the second one for GDB used

to control the remote PC simulator.

Fig. 2. Possible setups for running PC simulator using GDB debugging

software with MTE.

Application consists of four parts similar to the APIs given

above:

1. RCU controller

2. Stream controller

3. Logger

4. Test suite controller

Using an RCU controller, the user or developer can control

the PC simulator using commands in the window that

resemble the real RCU, as shown in Fig. 3.

Fig. 3. Key components of DTV software running as part of the PC simulator
are on the right side. On the left side are elements of the MTE.

The stream controller window is responsible for adjusting

input DTV streams for the PC simulator. It allows setting

stream files and broadcasting parameters.

Logger windows give information about logging data and

allow users to filter and search for specific data in the log. The

search pattern is highlighted in the log. In the filter window,

only lines matching patterns are presented (Fig. 4).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 3 of 4 ISBN 978-86-7466-930-3

Fig. 4. Search and filter windows for logged information.

IV. VERIFICATION AND RESULTS

As a result of the following implementation, a test suite was

created for commercial products using only BBT API (black-

box testing). Test suites are grouped by the features they are

testing. A list of all test groups and the number of tests are

given in Table 1.

TABLE I

LIST OF TEST SUITES PREPARED AND RESULTS

Info channel 5 test cases PASSED
EPG 6 test cases PASSED
Genres 2 test cases PASSED
Menus 10 test cases PASSED
PVR 8 test cases PASSED
Reminders 3 test cases PASSED
Favorite lists 6 test cases PASSED
Service lists 5 test cases PASSED
Volume 6 test cases PASSED
Service lists 5 test cases PASSED
Zapping 5 test cases PASSED

In the case of automated black-box testing, some graphical

test cases may be challenging to create and prove reliable.

User interface graphics blended with background video make

it more difficult for AI-based engines to recognize certain

visual elements' fonts, text, and shapes. Also, the comparison

rate with expected images (shapes) may drop due to the

background video. Our solution can compare video and

graphical layers separately, resulting in higher recognition

rates than blended image recognition using tools like OpenCV

and tesseract. As a result, our MTE showed fewer errors than

hardware running as part of the Intent+ solution.

 Verification time was about 15 minutes, compared to

manual testing, which will take 1-2h depending on tester

skills. This allows developers to save considerable time when

developing new features. Compared to automated hardware

testing, execution time is around the same. It will enable

continuous integration (CI) systems like Jenkins to repeat

testing on selected changes.

V. CONCLUSION

With the proposed solution DTV application could be

tested in the development phase by research and development

teams or by dedicated QA teams. Automated tests written for

MTE are usable for BBT devices in hardware testing, as they

are written using the same API.

The essential contribution of this work is automated testing

using software debuggers, where developers can inspect

certain parts of the system multiple times and summarize

information in reports. This type of testing can mimic unitary

testing and complex scenario testing having internal systems

state exposed for examination and reporting. It allows tightly

coupled modules to be slowly refactored and isolated to

introduce unitary testing and low-level verification.

Additionally, any other DTV software capable of porting to

the PC platform could be tested using this MTE framework. It

has to implement necessary features for that middleware and

additional requirements to support communication protocol

with MTE.

Further work could be done toward implementing support

for CAS/DRM simulator or emulation. Also, it would be of

great benefit to change DTV signaling from within the MTE

application, as now it relies on signaling transported in DTV

streams captured from live DTV networks. Another path for

improvements is to add systems for code coverage and

memory leak checks like Valgrind that could check

applications in specific test scenarios as part of the automatic

test.

REFERENCES

[1] T. Tarkan, “User-driven Automatic Test-case Generation for DTV/STB
Reliable Functional Verification”; IEEE Transaction on Consumer

Electronics, vol.58, no.2, pp. 587-595, ISBN: ISSN:0098-3063, 2012

[2] Cabot Communications, “Automated testing of digital television
devices“, accessed 2022, http://www.cabot.co.uk/solutions/robotester-

white-paper/at_download/CB.pdf

[3] M. Kovacevic, B. Kovacevic, D. Stefanovic, V. Pekovic “System for
automatic testing of Android based digital TV receivers “, INDEL 2014,

Banja Luka
[4] Intent+, https://www.rt-rk.com/services/testing-centre, accessed May

2022

[5] STB Tester, https://stb-tester.com/, accessed May 2022
[6] Test suite, https://suite.st/, accessed May 2022

[7] S. Nidhra1, J. Dondeti, “BLACK BOX AND WHITE BOX TESTING

TECHNIQUES – A LITERATURE REVIEW”, IJESA, Vol.2, No.2,
June 2012

[8] I. Jovanovic, “Software Testing Methods and Techniques”, IPSI TIR,

2009
[9] G. Miljkovic, “DTV Linux Device Abstraction for Embedded Systems”,

ISCE, ISBN:978-1-4244-6673-3, 2010

[10] A. Šuka, Đ. Glišić, M. Jovanović, “One solution of DTV simulator for
PC platform“, TELFOR, 2019

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.3 - Page 4 of 4 ISBN 978-86-7466-930-3

 Abstract – This paper presents a comparison of the
performances of type-2 hypervisors, on the example of desktop
virtualization applications, which include VirtualBox, VMware
Workstation Player, and MS Hyper-V. The qualities of all three
tested hypervisors, from many aspects of performance, were
tested through the performance of the files system. Tests were
performed under the same conditions and the same testing
methods, using the Filebench program. CentOS 7 was used as
the guest operating system. The hypervisor’s performances
were compared taking into consideration the tests performed
for the system with one, two, and three virtual machines in
operation. Hypotheses about expected behavior were set, and
then they were validated through the obtained results using the
Filebench program.
 Index Terms – VirtualBox; VMware Workstation; MS
Hyper-V; CentOS; hypervisor; virtual machines.

I. INTRODUCTION

 Virtualization as a concept is increasingly used and
conquers new spaces. It has become a part of everyday life
for the simple reason that information technology are all
around us. As these technologies are increasingly present in
modern life and are constantly advancing, virtualization has
taken its place in this development. The main advantages
obtained by applying virtualization can be seen in the
reduction of costs of IT equipment, electricity and storage
space for this equipment. The concept itself provides high
security and resistance to failures, and makes administration
easier. The choice of virtualization methods and techniques
depends on the specific situation and the needs of the end
user. This is due to the fact that some virtualization
techniques achieve greater flexibility in operation, while
others achieve better performance or security. The most
commonly used virtualization techniques are: virtualization
of hardware, software, data, memory, storage space,
virtualization of network infrastructure and virtualization of
desktop computers. [1]

Borislav Đorđević – Institute Mihailo Pupin, Volgina 15 Belgrade, Serbia,
(borislav.djordjevic@pupin.rs)
Iva Jovičić – VISER, School of Electrical and Computer Engineering of
Applied Studies, Belgrade, Serbia, (iva.jovicic@yahoo.com)
Nenad Kraljević – VISER, School of Electrical and Computer Engineering
of Applied Studies, Belgrade, Serbia, (nenadk@gs.viser.edu.rs)
Valentina Timčenko - Institute Mihailo Pupin, Volgina 15 Belgrade, Serbia,
(valentina.timcenko@pupin.rs)

 Virtualization involves the encapsulation and abstraction
of computer components, so these components can be used
in a way that suits a particular application. Hardware
virtualization involves usage of hypervisor, a software layer,
which is an intermediary between the hardware and the guest
operating system in a virtual machine. This is a simulated
environment that could have characteristics equal to the
physical environment. The hypervisor can be native, or type-
1, which runs directly on the hardware, or hosted, type-2,
which runs on the operating system. Examples of this type
of hypervisor are VirtualBox 6.1 and VMware Workstation
16 player which have been tested for the purpose of this
paper. MS Hyper-V is a bare metal, type-1 hypervisor.
However, when activated as a roll, in this case in Windows
10 Pro, it behaves as a type-2 hypervisor. This version of MS
Hyper-V was used in the testing process for this paper. [2]
 Other than above described classification, hardware
virtualization also depends on whether full, partial, or
paravirtualization is selected. Full virtualization (Figure 1),
topic of this research, represents a simulation of complete
hardware, so guest operating systems can be installed and
ran without problems. The guest operating system is
separated from the physical layer of the host, the hypervisor
layer. The advantage of this method of virtualization is
increased security and scalability, as well as system
flexibility. This solution is the easiest to use, but the
performance is slightly lower. [3,4]

Hypervisor
(Full Virtualization)

HARDWARE

Traps

Device
Emulator

GUEST
OS

GUEST
OS

VM
ADMINISTR

ATIVE
CONSOLE

Figure 1. Full virtualization

Comparison of type-2 hypervisor performance
on the example of VirtualBox, VMware

Workstation player and MS Hyper-V
Borislav Đorđević, Member IEEE, Iva Jovičić, Nenad Kraljević and Valentina Timčenko, Member

IEEE

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 1 of 6 ISBN 978-86-7466-930-3

II. RELATED WORK, OBJECTIVE AND MOTIVATION

 The focus of this research are the performance
characteristics of hypervisors as one of the basic factors in
achieving service quality. The problem itself, which can be
found in the literature as well as by using these systems in
practice, can be viewed from several angles. There are many
papers and discussions that use different methodology and
approach to evaluating the performance of virtual platforms.
The most common is a comparative performance analysis of
VMware, Xen, MS Hyper-V and other hypervisors by using
various benchmark tools such as HD Tune Pro, ATTO,
Filebench, Bonnie ++, etc. Virtualization is a great solution
in both desktop and server versions. The needs for virtual
platforms for personal use are growing. The main
contribution is the mathematical modeling of the file system
performance in hypervisor-based virtualization. The
modeling of complex virtual environment includes many
factors, and modeling expects there is no single winner
hypervisor. Similar mathematical model, we used in this
paper and most our references [3], [5], [10], [11]. Our model
is open for enhancing. We think we are different from related
work by our methodology. Its essence is a mathematical
model, apply it on a particular case study, and then provide
the interpretation of practical results as a validation of
model. Using by large number of case studies, we
recommend the creation of Knowledge Data Base (KDB)
related to the file system performance in virtual
environment. Case study in this paper include the
performance comparison of three hypervisors in the desktop
version, namely VirtualBox, Vmware Workstation player
and Hyper-V, in fair-play conditions. This implies identical
hardware, the same virtual machines, and an identical
version of the guest operating system, which in this case was
CentOS 7, an operating system from the Linux distribution
family. As VirtualBox and Vmware Workstation player use
full virtualization, and MS Hyper-V and paravirtualization
as well, the effects of full virtualization for three different
hypervisors were examined, using the Filebench benchmark
program with four different workloads. Hypotheses about
expected behavior are set, followed by a mathematical
model for workloads and a hypervisor environment.
Performance was measured and the obtained results were
interpreted on the basis of models and hypotheses. This
paper has some similarities with reference at the serial
number five in our literature. The results have the similarities
and differences, because the hardware and many other
factors are quite different, but we think that both papers are
interesting and useful cases of study.

III. VIRTUALBOX, VMWARE WORKSTATION PLAYER AND
MS HYPER-V

 Oracle's VirtualBox is a very powerful program for
virtualizing 32-bit and 64-bit operating systems, on
computers with Intel or AMD processors. VirtualBox is the

only professional solution that is available for free as open
source software under the terms of "GNU" version 2. This
software runs on Windows, Linux, Mac and Solaris
operating systems. The technical requirements for running
this software are:

• 32-bit or 64-bit operating system with AMD or
Intel processor,

• 512MB or more RAM (depending on the number
and type of operating systems being virtualized.
The RAM memory space allocated to the virtual
machine environment can go up to half capacity, as
the software itself will not allow more than half of
the base system's RAM.

• available hard disk space for the virtual machine
environment (recommended size is a minimum of
8GB).

VirtualBox Hypervisor

Other Devices

Virtual USB
Devices

Virtual Disks

Windows

MacOS

Linux

Virtual NICs

Virtual Devices

Solaris

Portability Layer

Live Migration RDP Server Resource
Monitor

Oracle VM VirtualBox API Layer

Management Layer

Console GUI Web Services
API

Command Line
Interface

Host OS

Figure 2. VirtualBox architecture

 VirtualBox allows quick and easy data sharing between
virtual machines (Figure 2). As VirtualBox is open source,
or rather it's software, it tends to solve problems quickly and
can be upgraded with new features. Since version 6.1, which
is used in this paper, the ability to export and import virtual
machines to Oracle Cloud has been added. Software
virtualization has been deprecated since this version, and
VirtualBox 6.1 uses only hardware-assisted virtualization.
[5,6]
 VMware® is considered one of the largest manufacturers
of software virtualization. The solutions of this company
occupy over 70% of the market share in this area, primarily
due to the quality of products and the availability of technical
support. VMware® has been acquired since 2004 and
became part of the EMC Corporation. VMware Workstation
16 player is a software package that runs on standard x86-
based hardware with 64-bit Intel and AMD processors and
on 64-bit Linux and Windows operating systems. [7,8]
 VMware Workstation 16 player (Figure 3) can run
existing virtual machines and create their own virtual
machines. It uses the same virtualization core as VMware
Workstation Pro, a similar multi-featured, non-free program.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 2 of 6 ISBN 978-86-7466-930-3

VMware Workstation 16 player is available for personal
non-commercial use (free), for distribution or other use by
written agreement. The technical requirements for running
this software are:

• 64-bit operating system from the Windows or
Linux family with AMD or Intel processor,

• 2GB or more RAM (recommended 4GB or more),
• 1.3GHz or higher core speed,
• available hard disk space.

Host OS
VMware workstation player

Applications Applications Applications

Figure 3. VMware Workstation player architecture

 Microsoft is one of the leading companies in information
technology. At the server level, virtualization has become
the standard, but interest in virtualization has also emerged
among users for personal use. Microsoft occupies about 15%
of the market with MS Hyper-V virtual platform. With the
release of Windows 8 in 2012, MS Hyper-V became an
integral part of its Enterprise, Education and Pro editions.
MS Hyper-V is a type-1 hypervisor-based system for x86-
64 operating system architectures. It is activated in the
Windows operating system as a roll, just like any other
service in the Microsoft family. There are some MS Hyper-
V features that work differently in Windows OS and
Windows server. The memory management model is
different for MS Hyper-V, where MS Hyper-V manages
memory on the server assuming only virtual machines run
on the server, and in the Windows operating system, it is
managed with the expectation that most client machines run
software on the host in addition to virtual machines. [9-11]

Hypervisor

Applications

 Storage
Networking

Guest OS
Kernel

Child partition
(Windows or Linux)

Child partition
(Windows or Linux)

Parent partition
(Windows with Hyper-V

role enabled)

VM Worker processes

Host OS

VSC

Device Driver

VSP

VM Bus

Figure 4. MS Hyper-V architecture

 MS Hyper-V (Figure 4) supports virtual machine
isolation and uses partitions in which guest operating
systems will run.

IV. HYPOTHESES ABOUT EXPECTED BEHAVIOR

 As the Type-2 hypervisor running under the guest
operating system was used, we can point out that each
workload generates typical random and sequential data read
times, as well as random and sequential data write times.
Each workload is defined by the access time for file systems.
Workload represents the total time to complete all
operations, the time required to complete all operations
related to directories, metadata, file blocks, free lists, house-
keeping and journaling operations in the file system. There
are five components in a virtual environment that have an
impact on workload time (Tw – Time Workload):

 Tw = f (Bn, gFS, VHw-pr, Hp-pr, hFS) (1)

 The first and second components, Bn (Benchmark) and
gFS (guest OS file system) are exactly the same for VMware
Workstation player, Oracle VirtualBox and MS Hyper-V.
The analysis focuses on the interaction between the
reference values and the guest operating system. Because the
test environment relies on the use of an identical benchmark,
identical virtual machines, and ext4 as the guest file system,
these components are expected to have an identical effect on
Tw. Processing time for full hardware virtualization is the
third component of VHw-pr (virtual hardware processing).
Each hypervisor uses its own solution for full hardware
virtualization, so the performance will be different too. The
fourth component, Hp-pr (hypervisor processing), represents
the time it takes for the hypervisor to receive requests from
the virtual hardware and forward them to the host drivers. In
particular, guest FS requests (guestOS-FS) are forwarded to
host FS (hostOS-FS). All of these hypervisors, VMware
Workstation player, Oracle VirtualBox and MS Hyper-V,
generate different hypervisor processing times. The fifth
component, hFS (host OS file system), represents the

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 3 of 6 ISBN 978-86-7466-930-3

processing time of the host OS file system. All hypervisors
have MS NTFS as hostOS-FS, so this component is expected
to have similar processing times for all hypervisors. The
dominant influence of the third and fourth components of
formula (1) is expected as the tests are focused on the
performance of natively virtualized guests (complete
hardware virtualization). [12]

 V. TEST CONFIGURATION AND BENCHMARK APPLICATION

 The prerequisite for quality and adequate testing is the
application of one hardware configuration, the same
operating system, then the selection of a quality benchmark
program and the same measurement methodology for all
testing procedures. Testing was done on a personal computer
whose characteristics can be seen in Table I, while the
characteristics of the disk are given in Table II. CentOS 7
from the Linux distribution family is installed as a guest
operating system.

TABLE I - TEST ENVIRONMENT/PC

Components Characteristics
Processor Intel Core i5-4590S 3GHz
Memory 8GB DDR3
Cache 6MB L3
Hard drive Seagate Barracuda 7200.12
Operating system Windows 10 Pro, 64-bitni

 VirtualBox 6.1 virtualization platforms, VMware
Workstation 16 and MS Hyper-V, a version for Windows 10
Pro, are installed or activated on the hard drive, where the
tests were done. The hard drive was also used to install
virtual machines.

TABLE II - TEST ENVIRONMENT/HARD DISK

 Seagate Barracuda
7200.12

Model Number Seagate ST3500418AS
Capacity 500GB
Interface Serial-ATA/300
External Transfer Rate 3.0Gb/s
Max Sustained 300MB/s
Cash 16MB
Average Latency 4.17ms
Spindle Speed 7200rpm
Average Seek Time Read 8.5ms
Average Seek Time Write 8.5ms

 All tests were performed using the benchmark program
Filebench 1.4.9.-1. This program is designed to measure
storage space and performance of file system. Filebench is
capable of generating several types of workloads, it can

simulate environments when using certain services such as
mail server, fileserver, web server, etc. [13, 14]

VI. TESTING AND RESULTS

 This paper shows a comparison of the performance of
virtual platforms for personal use with their capabilities.
Disk performance and data flow were measured. To make
testing meaningful, all virtual machines are created exactly
the same and have the same characteristics (Table III).

TABLE III - VIRTUAL MACHINE PARAMETERS

Components Characteristics

Virtual processor 1
Memory 2GB
Virtual hard drive 60GB
Operating system CentOS 7

 During the testing, modified base code files were used,
such as varmail.f, fileserver.f, webserver.f and
randomfileaccess.f, which test the web, mail and file server.
The appearance of the set parameters of the benchmark
program can be seen in Table IV. To achieve the most
realistic results, each test lasted 120 seconds. Each test was
repeated ten times, and the obtained results were expressed
as the average value of these tests.

TABLE IV – BASE CODE PARAMETERS OF *F FILE

 Varmail Web
server

File
server

Random
file

access
nthtreads 16 100 50 5
nfiles 1000 1000 10000 10000
meandir
widht

1000000 20 20 20

meanfile
size

16k 16k 128k random

 Tests were conducted by first installing VirtualBox and
then creating a virtual machine in this program. It was tested,
and then this procedure was repeated when two and
afterwards three virtual machines were created. The testing
system was exactly the same when the virtual machines in
the VMware Workstation 16 player application were tested.
Of course, before testing on this platform, previous virtual
machines and VirtualBox applications were uninstalled. At
the end of the testing, the MS Hyper-V roll was activated
and tests were performed, as in the previous two cases. In
that way, fair-play conditions were created for all three
virtual platforms. The results of the Fileserver workload test
can be seen in Table V and Figure 5.

TABLE V - FILESERVER BENCHMARK RESULTS

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 4 of 6 ISBN 978-86-7466-930-3

Fileserver 1VM

(MB/s)
2VM

(MB/s)
3VM

(MB/s)
VMware 74,58 64,33 56,41
VirtualBox 42,03 35,16 29,76
MS Hyper-V 33,34 28,12 21,53

Figure 5. Fileserver test results

 The results of testing other workloads are shown in
Tables VI, VII and VIII, as well as graphical representations
in Figures 6, 7 and 8.

 For the "Fileserver" workload, we note that VMware is
by far the best, while VirtualBox is better than Hyper-V. In
a complex workload such as Fileserver with sequential and
random write components, the FS cache effect on guest and
hostOS is significant, so VMware wins convincingly
primarily because of the 3rd component of formula (1) and
the best cooperation with FS caching.

TABLE VI - VARMAIL BENCHMARK RESULTS

Varmail 1VM
(MB/s)

2VM
(MB/s)

3VM
(MB/s)

VMware 44,58 42,62 39,87
VirtualBox 18,46 17,83 16,62
MS Hyper-V 14,06 12,77 10,11

Figure 6. Varmail test results

 For the "Varmail" workload, we note that VMware is by
far the best, while VirtualBox is again slightly better than
MS Hyper-V. In the Varmail workload, in addition to
random reading, there are also synchronous components of
random write, the impact of FS caching is small, so VMware
and then VirtualBox obtain wins, primarily because of the
3rd and 4th components of formula (1).

TABLE VII - WEBSERVER BENCHMARK RESULTS

Webserver 1VM
(MB/s)

2VM
(MB/s)

3VM
(MB/s)

VMware 84,68 81,04 77,68
VirtualBox 47,73 42,26 37,86
MS Hyper-V 80,92 76,61 71,92

Figure 7. Webserver test results

 For the "Webserver" workload, we note that VMware is
slightly better than MS Hyper-V, and VirtualBox is
significantly weaker. In the Webserver workload, which has
both random read components and very few random write
components, there is less influence of FS caching, so
VMware and MS Hyper-V did better than VirtualBox, and
win primarily because of the 3rd and 4th and the components
of formula (1) and the cache effect in random reading, the
dominant workload in Webserver environment.

0

20

40

60

80

1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)

Fileserver

VMware VirtualBox Hyper - V

0

20

40

60

1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)

Varmail

VMware VirtualBox Hyper - V

0

50

100

1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)

Webserver

VMware VirtualBox Hyper - V

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 5 of 6 ISBN 978-86-7466-930-3

TABLE VIII – RANDOMFILEACCESS BENCHMARK RESULTS

Randomfile
access

1VM
(MB/s)

2VM
(MB/s)

3VM
(MB/s)

VMware 5141,56 5034,02 5008,76
VirtualBox 2595,11 2546,56 2517,36
MS Hyper-V 4888,85 4816,64 4790,44

Figure 8. Randomfileaccess test results

 For the "Randomfileaccess" workload, we can see that
Hyper-V is slightly weaker than VMware, and VirtualBox is
significantly weaker again. In the Randomfileaccess
workload, which has both random read components and a lot
of asynchronous random write components, there is a solid
impact of FS caching primarily for random writing, so
VMware and MS Hyper-V fared better than VirtualBox,
primarily because 3rd and 4th components of formula (1)
and solid cache effect in random entry.

VII. CONCLUSION

 When it comes to virtualization, it should be noted that it
brings major changes in the information technology and
computer industry, primarily in reducing investment in
infrastructure and saving electricity consumption. In area of
personal computers, virtualization has made great strides by
bringing a large number of software for this purpose. Some
of them are also presented in this paper. The advantage of
using these applications is the ease of installation and usage,
and the fact that the platforms tested in this paper are
completely free. For this case study, VMware is the absolute
winner in all workloads. We believe that the differences is
made by the 3rd and 4th components of formula (1), as well
as by the powerful hypervisor usage of the FS cache effect.
For workloads with many sequential features and weak
cache effect (Fileserver and Mailserver) VirtualBox is better
than MS Hyper-V, and for workloads with random
dominance and solid cache effect (Webserver and
Randomfileaccess) MS Hyper-V is better than VirtualBox.
Future work on this topic will focus on testing other virtual
platforms in the field of desktop computers, as well as the

use and testing of various operating systems that are applied
in practice.

ACKNOWLEDGEMENT

 The work presented in this paper has partially been
funded by the Ministry of Education, Science and
Technological Development of the Republic of Serbia.

LITERATURE:

[1] Matthew Portnoy: “Virtualization Essentials”, 2016.
[2] Hypervisor Type-2. Online: https://www.ibm.com/developerworks

/cloud/library/cl-hypervisor compare/, 2021.
[3] B.Đorđević, V.Timčenko, N.Kraljević, N.Davidović, “File system

performance in full hardware virtualization with ESXi and Xen
hypervisors”, 18th International Symposium INFOTEH-JAHORINA,
2019.

[4] Full Virtualization. Online: https://www.sciencedirect.com/topics
/computer-science/full-virtualization, 2021.

[5] Dejana T. Vojnak, Borislav S. Đorđević, Valentina V. Timčenko,
Svetlana M. Štrbac: “Performance Comparison of the type-2
hypervisor VirtualBox and VMware Workstation player”, 27th
Telecommunication Forum, 2019.

[6] VirtualBox, Online: https://www.virtualbox.org/, 2021.
[7] Perfomance Evaluation of VMware and VirtualBox Online:

https://pdfs.semanticscholar.org, pdf-2021.
[8] VMware, Online: https://www.vmware.com/product/workstation-

player.html, 2021.
[9] Microsoft, Online: https://www.microsoft.com/, 2021.
[10] Jadran Torbić, Ivan Stanković, Borislav S. Đorđević, Valentina

Timčenko: “Hyper-V and ESXi hypervisors comparison in Windows
Server 12 virtual environment”, 17th International Symposium
INFOTEH-JAHORINA, 2018.

[11] B. Đorđević, V. Timčenko, N. Kraljević, N. Maček: “File System
Performance Comparison in Full Hardware Virtualization with ESXi,
KVM, Hyper-V and Xen Hypervisors”, Advances in Electrical and
Computer Engineering, vol.21, iss.1, 2021.

[12] M. Polenov, V. Guzik, V. Lukyanov: “Hypervisors comparison and
their performance”, Computer Science Online Conference, 2018.

[13] Filebench, Online: https://github.com/filebench/, 2021.
[14] Christopher Stracheyje, “Time Sharing in Large Fast Computers”.

Online:https://archive.org/details/large/fast/computers/page/n5/mode
/2up, 2021.

0

2000

4000

6000

1VM - (MB/s) 2VM - (MB/s) 3VM - (MB/s)

Randomfileaccess

VMware VirtualBox Hyper - V

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.4 - Page 6 of 6 ISBN 978-86-7466-930-3

 Abstract - This paper presents a comparison of the
performance of native hypervisors on the example of MS
Hyper-V and QEMU/KVM virtual platforms. Their quality
was examined through aspects of file system performance.
Filebench program was used for testing procedure, which is an
application that guarantees equality and independence from
the impact of hardware environment. CentOS 7, an operating
system from the Linux distribution family, was used as the
guest operating system. The tests were performed for one, two
and finally three virtual machines that are running
simultaneously. The results were further validated based on the
defined hypotheses related to the expected behavior of the
hypervisors.

 Index Terms - MS Hyper-V; QEMU/KVM; CentOS; virtual
machines; performance.

I. INTRODUCTION

 In the area of information technology, virtualization is a
way of creating a virtual version of computer resources.
Virtualization is a simulation of the hardware or software
that other software, such as various operating system, is
running. Virtualization is initially applied by IBM in 1960s
as a method for the logical division of mainframe computer
system resources between different applications. The need
to manage the "one server-one application" model has been
eliminated, opening the possibility of running multiple
operating systems on the same hardware platform. The
advantages and savings that are obtained by using such a
system are more than obvious: hardware, CPU, memory
resources, administration staff. All this is a plus for
virtualization in the reliability segment. The virtualization
solutions allow easiness in adding new servers, as well as in
data migration from one server to another. This is an
additional advantage of this technology in the field of
scalability.

Borislav Đorđević - Mihailo Pupin Institute, Volgina 15 Belgrade, Serbia,
(borislav.djordjevic@pupin.rs)
Miloš Piljić - VISER, School of Electrical and Computer Engineering of
Applied Studies, Belgrade, Serbia, (milosrin4520@gs.viser.edu.rs)
Nenad Kraljević - VISER, School of Electrical and Computer Engineering
of Applied Studies, Belgrade, Serbia, (nenadk@gs.viser.edu.rs)
Valentina Timčenko - Institute Mihailo Pupin, Volgina 15 Belgrade, Serbia,
(valentina.timcenko@pupin.rs)

 Hardware virtualization, which is the topic of this paper,
is the most popular and widespread type of virtualization [1].
The software that controls virtualization is called a Virtual
Machine Monitor (VMM). According to the most common
form of use in a professional IT environment, the process of
creating and managing virtual machines is also called server
virtualization. There are two categories of hypervisor: type-
1 (native) and type-2 (hosted). In this paper, type-1
hypervisors were tested for the case of MS Hyper-V and
QEMU/KVM virtual platforms (Figure 1) [2].

Hardware

Hypervisor

Guest OS
VM

Guest OS
VM

Virtualized
Drivers

Virtualized
Drivers

Figure 1. Native hypervisors

II. RESEARCH WORK, GOAL AND MOTIVATION

 The literature related to this field is mostly focused on
comparative analysis of hypervisor performance, using by
different test methodology and benchmark tools. For this
purpose, some proven benchmark tools are usually used,
which is one of the cornerstones for obtaining quality level
results. We recommend the Filebench, as open source
solution, because it is a versatile, powerful, multithread and
it simulates the real application workloads. We recommend
the Fio tool, similar benchmark as Filebench, and some
synthetic benchmarks such are Bonnie++, Postmark etc. The
main contribution of this paper is the mathematical modeling

Comparison of file system performance in full
virtualization with MS Hyper-V and KVM

hypervisors
Borislav Đorđević, Member IEEE, Miloš Piljić, Nenad Kraljević and Valentina Timčenko, Member

IEEE

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.5 - Page 1 of 5 ISBN 978-86-7466-930-3

of hypervisor-based virtualization in the context of the file
system performance and applying the model on a
performance case study for the interpretation of benchmark
results. Because the complex virtual environment includes
large number of factors, model expects there is no single
winner hypervisor and depends on the case study i.e. the
workload characteristics. In relation to competition, we are
forcing a mathematical model and a number of case studies
based on model with practical performance tests. The server
variant of the virtualization stands for a great solution,
primarily due to the introduction of the infrastructure costs
and hardware reduction, followed by the easier
administration. Still, there is a lot of room and opened
questions for the improvement in this area. This paper
contribution is the validation and comparison of two
hypervisors, namely MS Hyper-V and QEMU/KVM, for
which we have tested the quality and performances in
identical conditions. Both hypervisors use full virtualization,
while MS Hyper-V is also suitable for the use of the
paravirtualization. As the guest operating system we have
used CentOS 7, popular distribution from the Linux OS
family, while for testing needs we have applied Filebench
benchmark program with 4 different workloads. After
defining the hypotheses, a mathematical model was set up,
and validated by the obtained results [3], [4].

III. MS HYPER-V AND QEMU/KVM

 MS Hyper-V is an efficient hypervisor, developed by
Microsoft, which enables virtualization of operating systems
in a server environment (Figure 2). With the release of
Windows Server 2008 R2 version, Microsoft has included a
Hyper-V virtualization solution in the operating system
itself. MS Hyper-V is a role that allows administrators to
create multiple virtual machine, and supports isolation of
partitions in which guest operating systems will run [5], [6].

Hypervisor

Applications

 Storage
Networking

Guest OS
Kernel

Hardware

VSC

Device Driver

VSP

VM Bus

Parent partition
(Windows with
Hyper-V role

enabled)

Child partition
(Windows or

Linux)

Child partition
(Windows or

Linux)

VM Worker
processes

Figure 2. MS Hyper-V architecture

 When it comes to virtualization under the Linux
operating system, KVM (Kernel-based Virtual Machine) is
almost indispensable technology. It is originally created as
the Red Hat sponsored project. KVM is implemented in the
form of a kernel module and is an integral part of the Linux
kernel from version 2.6.20. For the KVM it cannot be said
that it is a type-1 or type-2 hypervisor. On the one hand,
KVM extends the Linux kernel and adds virtualization
capabilities to it, allowing Linux itself to be treated as a
native hypervisor (Figure 3). On the other hand, Linux is a
standalone OS on which KVM functionality relies
orthogonally, so it can be said that KVM runs above the main
OS (hosted hypervisor), using already implemented system
functions in the absence of its own (QEMU) [7-9].

Hardware Support,
Virtualization technologies for x86

(AMD-V or Intel-VT)

Linux Kernel

Userspace
Process

Userspace
Process ...

QEMU/KVM

Guest Kernel

Guest Userspace
Processes

KVM
(Module)

Figure 3. QEMU/KVM architecture

IV. HYPOTHESES ABOUT EXPECTED BEHAVIOR

 Both hypervisors are native, they work directly on the
hardware and are realized in the microkernel architecture.
The total processing time for each load Tw (Time workload)
can be calculated as follows (eq. 1):

TW = TRW + TSW + TRR + TSR (1)

where TRW and TSW represent random and sequential data
entry times, while TRR and TSR represent random and
sequential read times. For each of these workloads, there is
an expected access time for a file system that includes five
components (eq. 2):

TWL = TFB+ TFL+ TJ+ THK+ TDIR+ TMETA (2)

where TWL represents the total time for the implementation
of all operations for a defined workload, and the elements
from equation (2) represent the time required for the
implementation all operations related to file blocks, file lists,
journaling, house-keeping, metadata and directory in the file
system. There are 5 components that have an impact on the
workload time TW (eq. 3):

TW = f (Bn, gOS-FS, Hp-proc, VH-proc, hOS-FS) (3)

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.5 - Page 2 of 5 ISBN 978-86-7466-930-3

 The first and second components Bn (Benchmark) and
gOS- FS (guest file system) are identical for KVM and
Hyper-V. Since an identical benchmark and the same virtual
machines with their ext4 guest file system are used in testing,
we can assume that these components will have the same
impact on the third component, Hp-proc (hypervisor
processing) which represents a typical delay of hypervisor
(KVM-delay, Hyper-V-delay). This represents the time that
takes the hypervisor to receive a request from the virtual
hardware and forward it to the host drivers. The fourth
component, VH-proc (virtual hardware processing) for
KVM is QEMU full virtualization, and for Hyper-V MS full
virtualization. Although these are full hardware emulations,
both hypervisors have their own solutions that will certainly
differ in performance. The fifth component is hOS-FS (host
file system). KVM uses ext4 and the Hyper-V NTFS file
system, and this component is expected to cause different
processing time for hypervisors. Since the tests are focused
on the performance of native virtualized guests, the
dominant influence of the third, fourth and fifth components
of formula (3) is expected.

V. TEST CONFIGURATION AND BENCHMARK APPLICATION

 In order for testing to be adequate and high quality, it is
necessary to use the same hardware configuration, the same
guest operating system, choose a quality benchmark test
program and the same performance measurement
methodology. The tests were performed on an IBM server,
whose characteristics can be seen in Table I, and the
characteristics of the hard disk on which the tests were
performed can be seen in Table II. CentOS 7 was used as a
guest OS [10].

TABLE I - SERVER/TEST ENVIRONMENT
 IBM 7945J2G - System x3650 M3

Processor Intel® Xeon E5620 2.4GHz

Memory 32GB DDR3

Cache 12MB L3

Hard Disk 8 x Kingston 240GB SSD Now V300
SATA 3 2.5 (SV300S37A / 240G)

Network 2 x 1Gb / s

 Virtual Platforms MS Hyper-V and QEMU/KVM are
installed on hard drives converted into RAID 10, size 960GB
(4x240GB SSD), while the other (RAID10/960GB) served
as a repository on which virtual machines were created.

TABLE II - HARD DISK/TEST ENVIRONMENT
 Kingston 240GB SSD Now

V300

Model Number SV300S37A/240GB

Model Name SSD Now V300

Capacity 240GB

Interface SATA 3.0 (6Gb/s)

Connectivity Technology SATA

Hard Disk Form Factor 2.5 Inches

Read / Write Speed 450MB/s

Cache Size 240GB

 All tests were done using Filebench, a benchmark
program version 1.4.9.1-3. This program is designed to
measure the performance of file systems and storage space
and is capable of generating a large number of workloads. In
this paper, 4 different workloads are used simulating
environments when using services: web, mail and file server
[11].

VI. TESTING AND RESULTS

 This paper presents a comparison of the performance of
virtual platforms for server use. Disk performance and data
throughput were tested. In order to make testing meaningful,
all virtual machines were created with identical
characteristics (Table III).

TABLE III - VIRTUAL MACHINE PARAMETERS
Components Characteristics

Virtual Processor 1

Memory 8GB

Virtual Hard Disk 200GB

 For mail, file and web server test needs, we have
modified the base code files for analyzed workloads:
webserver.f, varmail.f, fileserver.f and randomfileaccess.f.
First, Hyper-V was tested, which was activated as a role on
Windows Server 2016, by creating one virtual machine that
was tested. The same procedure is repeated for testing the
environment with two and three virtual machines. Each test
lasted 120 seconds and was repeated ten times. The final
result represents the average value of the obtained test
results. Before testing the KVM virtual platform (using
CentOS 7 with the KVM option checked), the Windows
server with its virtual machines was uninstalled in order to
clean the environment. An identical installation and testing
procedure were then conducted with the KVM virtual
platform. In this way, fair-play conditions were acquired for

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.5 - Page 3 of 5 ISBN 978-86-7466-930-3

both virtual platforms. The results of Varmail workload
testing can be seen in Table IV and Figure 3.

TABLE IV - VARMAIL BENCHMARK RESULTS
Varmail 1VM

(MB/s)
2VM

(MB/s)
3VM

(MB/s)
Native
(MB/s)

MS Hyper- V 25.21 19.82 13.11

QEMU/KVM 13.04 12.79 12.22

Native OS 68.77

Figure 3. Varmail test results

 For the “Varmail” workload, we notice that Hyper-V is
solidly better than KVM. In this workload, besides the
random read components these are synchronous random
write components too for which the impact of the FS caching
is very small. In this case, Hyper-V is better, primarily due
to the fifth component of formula (3), where NTFS for this
workload performed better in FS pair (ext4 on NTFS
compared to ext4 on ext4).

The results of testing other workloads can be seen in the
graphs (Figures 4.5 and 6), as well as in Tables V, VI and
VII.

TABLE V - FILESERVER BENCHMARK RESULTS
Fileserver 1VM

(MB/s)
2VM

(MB/s)
3VM

(MB/s)
Native
(MB/s)

MS Hyper-V 146.04 83.75 47.43

QEMU/KVM 155.44 138.84 115.46

Native OS 555.63

Figure 4. Fileserver test results

 For the “Fileserver” workload, we notice that KVM is
better than Hyper-V. In a complex workload such as
Fileserver in which there are random and sequential write
components, the FS cache effect on the guest and host OS is
significant, so KVM wins primarily because of the third and
fourth components of formula (3). We believe that KVM has
better virtual hardware processing and less hypervisor
latency.

TABLE VI - WEBSERVER BENCHMARK RESULTS
Webserver 1VM

(MB/s)
2VM

(MB/s)
3VM

(MB/s)
Native
(MB/s)

MS Hyper-V 53.94 47.73 43.28

QEMU/KVM 39.62 37.99 36.44

Native OS 115.26

Figure 5. Webserver test results

 For the “Webserver” workload, we can see that the
Hyper-V is again solidly better than the KVM. In the
Webserver workload, which has random read components
and very few random write components, there is less
influence of FS caching, so Hyper-V manages better,
primarily due to the fifth component of formula (3), or FS
pair (ext4 on NTFS in relative to ext4 to ext4) and the
combined effect of FS caching.

0
10
20
30
40
50
60
70

1VM (MB/s) 2VM (MB/s) 3VM (MB/s) Native OS
(MB/s)

Varmail

Hyper-V

KVM

Native OS

0

100

200

300

400

500

600

1VM (MB/s) 2VM (MB/s) 3VM (MB/s) Native OS
(MB/s)

Fileserver

Hyper-V

KVM

Native OS

0

20

40

60

80

100

120

1VM (MB/s) 2VM (MB/s) 3VM (MB/s) Native OS
(MB/s)

Webserver

Hyper-V

KVM

Native OS

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.5 - Page 4 of 5 ISBN 978-86-7466-930-3

TABLE VII - RANDOMFILEACCESS BENCHMARK RESULTS
Random
fileaccess

1VM
(MB/s)

2VM
(MB/s)

3VM
(MB/s)

Native
(MB/s)

MS
Hyper-V

3153.46 2588.48 2056.96

QEMU/
KVM

2121, 15 2007.26 1890.35

Native
OS

 13780.5
2

Figure 6. Randomfileaccess test results

 For the “Randomfileaccess” workload, we again notice
that Hyper-V is solidly better than KVM. In this workload,
which has a lot of asynchronous random write components
as well as random read components, there is a solid impact
of FS caching, especially for random write, and for that
reason Hyper-V performed better than KVM. This is
primarily the effect of the fifth component of formula (3),
NTFS, i.e. FS pair (ext4 on NTFS versus ext4 on ext4) and
solid cache effect in random write.

VII. CONCLUSION

 Virtualization has already proven itself in the field of
information technology and has found an adequate place. In
addition to all the benefits that this technology brings, it is
necessary to emphasize that it’s large share in the
preservation of the human environment, and we can
emphasize that it can be successfully used in the domain of
green technologies. For the research presented in this paper,
Hyper-V outperformed KVM in 3 out of 4 workloads, while
in the most complex workload (Fileserver), KVM was
dominant. For this kind of hardware and experiment, the
crucial role in the differences in performance was brought
by the difference in the file system of the host OS, the
difference in the FS pair (ext4 on NTFS vs. ext4 on ext4).
There are also differences in virtual hardware processing and
hypervisor processing, which have proven to be the most
complex workload (Fileserver). Future work in this area

may focus on testing different types of servers, as well as
other commonly used virtual platforms.

ACKNOWLEDGMENT

 The work presented in this paper has been partially
funded by the Ministry of Education, Science and
Technological Development of the Republic of Serbia.

LITERATURE:

[1] Christopher Strachey, “Time Sharing in Large Fast Computers”.
Online: https://archive.org/details/large-fast-computers/page/n5/
mode/2up, 2021.

[2] Virtualization. Online: https://www.redhat.com/en/topics
/virtualization /what-is-virtualization, 2021.

[3] Full Virtualization. Online: https://www.sciencedirect.com/topic
s/computer-science/full-virtualization, 2021.

[4] Matthew Portnoy: “Virtualization Essentials”, 2016.
[5] Jadran Torbić, Ivan Stanković, Borislav S. Đorđević, Valentina

Timčenko: “Hyper-V and ESXi hypervisors comparison in
Windows Server 12 virtual environment”, 17th International
Symposium INFOTEH-JAHORINA, 2018.

[6] Microsoft, Online: https://www.microsoft.com/, 2021.
[7] B. Đorđević, V. Timčenko, N. Kraljević, N. Maček: “File System

Performance Comparison in Full Hardware Virtualization with
ESXi, KVM, Hyper-V and Xen Hypervisors”, Advances in
Electrical and Computer Engineering, vol.21, iss.1, 2021.

[8] Linux KVM, Online: https://www.linux-kvm.org/, 2021.
[9] Qemu process emulator, https://www.qemu-project.org/, 2021.

[10] M. Polenov, V. Guzik, V. Lukyanov: “Hypervisors comparison
and their performance”, Computer Science Online Conference,
2018.

[11] Filebench, Online: https://github.com/filebench/, 2021.

0

5000

10000

15000

1VM
(MB/s)

2VM
(MB/s)

3VM
(MB/s)

Native OS
(MB/s)

Randomfileaccess

Hyper-V

KVM

Native OS

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.5 - Page 5 of 5 ISBN 978-86-7466-930-3

Abstract— During the difficult times of the Covid pandemics

and the transfer of work from the office to the home, security has

never been more challenging. Because the development of

information technology is expanding day by day, there is

increasing amount of network traffic. Within that traffic, a

potential attacker can often cover up his evil intentions. To detect

attacks on host computer and prevent it from further malicious

activities, Host Intrusion Detection Systems are often used. One

of these systems is Wazuh and thanks to its powerful features it

has been adopted by many companies. This paper provides an

overview of the possibilities of Wazuh tools with a special

emphasis on well-known attack detection on web servers.

Index Terms—Wazuh, web-server, network, security,

monitoring, attack.

I. INTRODUCTION

The network monitoring system is used in the internal or

external network in order to best identify risk components and

prevent system crashes. The task of these systems is to find a

weak point, submit a report and, if possible, solve the

problem. Given the growing challenges in cyber security and

the increasing amount of data generated globally, network and

security administrators face a growing challenge. Most

engineers use the Host Intrusion Detection System to detect

and identify attacks and the Intrusion Prevention System to

prevent them.

One of the main components of any application and an

almost inevitable part of any data center is a web server - a

hardware-software component that houses websites that serve

end-users. Web servers are mostly exposed to the Internet and

thus exposed to a large volume of potential attacks coming

either from real attackers or from automated bots. Identifying

attacks on web servers is a basic task of any administrator

who maintains them because if protection is breached, the

application may be inaccessible to a large number of users or

permanently destroyed [1]. There are many network security

monitoring solutions used worldwide [2]. One of the tools that

Stefan Stanković is with the School of Electrical Engineering, University
of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia and with

Vlatacom Institute oh High Technologies, 5 Milutina Milankovica, 11070

Belgrade, Serbia (email: stefan.stankovic@vlatacom.com).
Slavko Gajin is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (email:

slavko.gajin@rcub.bg.ac.rs).
Ranko Petrović is with the Vlatacom Institute oh High Technologies, 5

Milutina Milankovica, 11070 Belgrade, Serbia (email:

ranko.petrovic@vlatacom.com).

helps identify and detect attacks on web servers is Wazuh.

This paper will present the main features of the Wazuh tool

installed in the University of Belgrade Computer Center.

Wazuh is a tool used around the world for various

purposes. Paper [3] describes how the Wazuh tool can be used

to test solutions that detect attacks within their constructed

honeypot. On the other hand, Wazuh can integrate with

machine learning as described in [4]. The advantage of this

work is that it can serve network and security engineers very

well in network and host security monitoring.

This work demonstrates Wazuh tools when collecting data

exclusively from web servers. The results obtained through

this paper give administrators an insight into what needs to be

changed within their configurations in order to bring their

servers and the entire infrastructure to the highest security

level.

The paper is written in 4 major sections. After the

introduction, Section 2 describes the basic functionalities of

Wazuh tools and experimental setup, followed by Section 3,

where statistic data are shown. Section 4 presents the results

related to known attacks such as SSH (Secure Shell) brute

force. The last section presents the main conclusions with

ideas for future work.

II. WAZUH OVERVIEW AND EXPERIMENT SETUP

Wazuh is a free and open-source platform for threat

detection and security monitoring according to predefined

security rules. It can be used to monitor endpoints such as

desktops, laptops, servers, or network devices such as

firewalls and routers, and to aggregate and analyze data in

real-time. Wazuh provides the following capabilities [5]:

• Security analytics - collection, aggregation, indexing

and processing of security data, helping organizations detect

intrusions, threats and behavioral anomalies.

• Intrusion Detection - Wazuh agents scan the

monitored systems looking for malware, rootkits and

suspicious anomalies. They can detect hidden files and

processes.

• Log Data Analysis - Wazuh agents read operating

system and application logs, and securely forward them to a

manager for rule-based analysis.

• File Integrity Monitoring - Wazuh monitors the file

system, identifying changes in content, permissions,

ownership and attributes of files that need attention.

• Vulnerability Detector - Wazuh agents pull software

inventory data and send this information to the server, where

it is correlated with periodically updated CVEs (Common

A Review of Wazuh Tool Capabilities for

Detecting Attacks Based on Log Analysis

Stefan Stanković, Slavko Gajin, and Ranko Petrović, Member, IEEE

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.6 - Page 1 of 5 ISBN 978-86-7466-930-3

Vulnerabilities and Exposures) databases, in order to identify

well-known vulnerable software.

• Configuration Assessment - Wazuh monitors system

and application configuration settings to ensure they are

compliant with security policies and standards. Agents

perform periodic scans to detect applications that are known

to be vulnerable, unpatched, or insecurely configured.

A. Wazuh components

The Wazuh solution is based on the following 3

components [6]:

• Wazuh agent - Installed on endpoints such as laptops,

desktops, servers or virtual machines, it provides prevention,

detection and response capabilities. It supports Windows,

Linux, MacOS, HP-UX, Solaris and AIX platforms.

• Wazuh server - It analyses data received from the

agents, processing it through decoders and rules, and using

threat intelligence to look for well-known indicators of

compromise.

• Elastic Stack -Elastic Stack is a unified suite of open-

source projects for log management, including Elasticsearch,

Kibana, Filebeat, and others. The projects that are especially

relevant to the Wazuh solution are: Filebeat, Elastic Search,

Kibana. Filebeat is A lightweight forwarder used to transfer

logs across a network, usually to Elasticsearch. It is used on

the Wazuh server to transfer events and alerts to Elasticsearch.

Elastic search is A highly scalable, full-text search and

analytics engine. A flexible and intuitive web interface for

mining, analyzing, and visualizing data. It runs on top of the

indexed content in an Elasticsearch cluster. Wazuh web user

interface has been fully embedded in Kibana, in the form of a

plugin. Wazuh architecture.

B. Wazuh architecture

The Wazuh architecture is based on agents, running on the

monitored endpoints, that forward security data to a central

manager. Moreover, agentless devices (such as firewalls,

switches, routers, access points, etc.) are supported and can

actively submit log data via Syslog. The manager decodes and

analyzes the incoming information, and passes the results

along to an Elasticsearch for indexing and storage.

C. Experiment setup

The results described in this paper were collected from

several web servers with CentOS operating system version of

7.9, located in the University of Belgrade Computer Centre.

Wazuh agents are installed on them to send Wazuh manager

data. Wazuh manager has been installed on a virtual machine

with Ubuntu operating system. Alternative to the

implementation on virtual machine, dockers can be used,

according to [7]. Some Wazuh manager functionalities are not

included by default, such as Vulnerability Detector.

Fig. 1. Wazuh architecture on experiment setup

III. WEB SERVER ATTACK DETECTION OVERVIEW

In this section the results within each element of Wazuh

Managers will be presented in brief outlines and special

emphasis will be placed on the analysis of well-known

attacks. Within the main dashboard, there are 4 basic sections

with options in which you can monitor data in real-time.

A. Security Information Management

Within this module there are 2 units in which statistics on

security events and integrity monitoring are located.

1) Security events

In this section, it is possible to search for all security events

recorded within the Wazuh system. The operation of the

system is based on agents that send data (logs) to the server

where they are processed. There is a whole set of rules

defined to identify threats. The results are processed and when

a rule is met then it is recorded within the dashboard. By

default, the rules are divided into 12 levels based on defined

standards. Wazuh provides the option to write custom rules

according to user needs. Figure 2 shows the sorted list of

security alerts. We see that the ‘Web server 400 error code’ is

the most prevalent error. In each unit within the Wazuh

manager, it is possible to display the results in a given time

range. Within each section, there is an option to generate

reports and for better visibility top 10 alerts from each report

will be displayed. Figure 2 presents the top 10 alerts from 31-

Mar-2022 to 27-Apr-2022.

Fig. 2. Top 10 security alerts

2) Integrity Monitoring

In this module, it is possible to monitor the statistics of

changes over system files on the host with the installed agent.

These changes include modifying files, deleting files, and

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.6 - Page 2 of 5 ISBN 978-86-7466-930-3

https://documentation.wazuh.com/current/getting-started/components/wazuh-server.html#wazuh-server

adding new files. Changes are detected based on the change in

the checksum of each file.

Within the Events tab, it is possible to follow each change

in detail, where you can find out the details of when a file was

changed, which user did the action and what are the file

permissions. This type of monitoring can be very useful,

especially for sensitive systems. The performed actions and

the list of files that are most often modified are shown in

Figure 3.

Fig. 3. The list of top modified files detected by Wazuh

B. Auditing and Policy Monitoring

This module offers 3 sections in which statistics and details

about the system configuration and how much that

configuration deviates from global standards.

1) Policy monitoring

This chapter shows the data obtained from the log analysis

of policy monitoring. System configuration verification, such

as kernel and security configuration files, is performed based

on predefined rules. Wazuh uses 3 components to perform this

task: Root check, OpenSCAP (Security Content Automation

Protocol) and CIS-CAT. If some process is hidden from the

virtual process file system (procfs), that file is marked as an

alert.

Fig. 4. The list of detected anomalies

2) System auditing

This section presents data based on which user behavior can

be monitored, command execution monitored and possibly an

alert raised if sensitive files are accessed. User behavior is

monitored by a powerful auditing facility called auditd which

provides a detailed accounting of actions and changes in a

system. Thanks to the Wazuh agent who sends auditd logs to

the manager, administrators can have insight into users’

behavior. The statistics from this section are shown in Figure

5.

Fig. 5. SElinux permission checklist

3) Security Configuration Assessment

Within this unit, before displaying the data, it is necessary

to select the agent where the configuration check will be

performed. When the check is performed, the statistics and

scores of that host are displayed. Verification is performed

based on CIS (Center for Internet Security) benchmark

recommendations for particular operating system distribution.

The check consists of executing a set of commands whose

result is binary: pass or fail. A detailed report is obtained

when exported in CSV format where the columns show,

among other things, commands, results, references and

recommendations. This statistic gives a very good insight into

the system configuration and draws the administrator's

attention to important configuration elements.

C. Threat Detection and Response

In this unit there are 3 entities in which it is possible to gain

insight into data related to threat detection. These entities are

vulnerabilities, virus Total and MITRE ATT&CK, a globally

accessible database of adversary tactics and techniques based

on real-world observations. Evaluation of Wazuh tool with

persistence tactic of MITRE ATT&CK is nicely described in

[8]. As the targeted system is not related to antivirus software,

no data has been collected.

1) Vulnerabilities

This module is not included in the main configuration file

by default and needs to be enabled. It performs vulnerability

searches according to the latest indexes that are updated in

real-time with Canonical, RedHat and National Vulnerability

databases. The detector on the manager inspects the list of

installed applications periodically sent by the agents. Based

on this list, search and verification processes are performed

within the local database with the latest CVE elements

(Common Vulnerabilities and Exposures). Alerts are

generated when a CVE affects a package installed on one of

the monitored servers. That package is then marked as

vulnerable. There are 2 types of scanning: full and partial. A

full scan is done the first time the Vulnerability Detector is

activated and then each packet is scanned individually. Partial

scanning is done when new packages are installed.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.6 - Page 3 of 5 ISBN 978-86-7466-930-3

Fig. 6. The list of matched CVEs detected by Wazuh

2) MITTRE ATT&CK

This feature allows the user to customize the alert

information to include specific information related to MITRE

ATT&CK techniques. MITRE ATT&CK matrix stores all

possible attacks that can be made and what to do to detect

them and mitigate the risk [9]. This can be useful when an

attack is detected through an alert and a user wants to know

more about it. MITRE ATT&CK assigns each attack

technique an ID (identification). These techniques are grouped

by tactics (Defense Evasion, Privilege Escalation, etc.)

although some of them belong to more than one tactic.

D. Regulatory Compliance

The Wazuh platform is often used to meet the technical

aspects of regulatory compliance standards. Wazuh not only

provides the necessary security controls such as host intrusion

detection, configuration assessment, log analysis, and

vulnerability detection, among others, to meet compliance

requirements but also uses its SIEM (Security Information and

Event Management) capabilities to centralize, analyse and

enrich security data. In order to provide regulatory compliance

support, the Wazuh rules have been mapped against

compliance requirements [10]. This way, when an alert is

generated (a rule condition has been matched), it

automatically includes compliance information. The following

standards are supported: Payment Card Industry Data Security

Standard (PCI DSS), General Data Protection Regulation

(GDPR), NIST Special Publication 800-53 (NIST 800-53),

Good Practice Guide 13 (GPG13), Trust Services Criteria

(TSC SOC2), Health Insurance Portability and Accountability

Act (HIPAA)

IV. EXPERIMENT, RESULTS AND SYSTEM PERFORMANCE

As already mentioned, one of the attacks analyzed in more

detail is the SSH brute force attack. a brute-force attack is

performed by an attacker submitting many passwords or

passphrases with the hope of eventually guessing correctly.

The attacker systematically checks passwords and passphrases

from the database until the correct one is found. Also, if a user

tries to connect via SSH using a random username, they will

be considered to have attempted an attack and that alert will

be recorded. Data processing on the Wazuh manager is in

real-time and a potential attack is detected and alerted almost

immediately. Table I provides very detailed information about

the alerts when a potential attacker tried to connect as a non-

existent user ‘dunja’.

The basic geo locations based on the source IP address are

followed by information about the user trying to connect and

the name of the decoder that analyzes the data. This is

followed by a description of the full log and an abbreviated

name as well as the original log file location.

TABLE I

SSH failed login overview

Parameter Data

GeoLocation.city_name Belgrade

GeoLocation.country_name Serbia

GeoLocation.location { "lon": 20.4721, "lat": 44.8166 }

GeoLocation.region_name Belgrade

_id s2K6-H8Bao9qD9NQsksr

_index wazuh-alerts-4.x-2022.04.05

data.srcip 217.24.19.131

data.srcport 11847

data.srcuser dunja

decoder.name sshd

decoder.parent sshd

full_log

Apr 5 07:57:36 wazuh sshd[233488]:

Invalid user dunja from 217.24.19.131

port 11847

id 1649145457

input.type log

location /var/log/auth.log

manager.name wazuh

predecoder.hostname wazuh

predecoder.program_name sshd

rule.description
sshd: Attempt to login using a non-

existent user

rule.gdpr IV_35.7.d, IV_32.2

rule.gpg13 7.1

rule.groups
syslog, sshd, invalid_login,

authentication_failed

rule.hipaa 164.312.b

rule.id 5710

rule.level 5

rule.mail FALSE

rule.mitre.id T1110

rule.mitre.tactic Credential Access

rule.mitre.technique Brute Force

rule.nist_800_53 AU.14, AC.7, AU.6

rule.pci_dss 10.2.4, 10.2.5, 10.6.1

rule.tsc CC6.1, CC6.8, CC7.2, CC7.3

timestamp Apr 5, 2022 @ 09:57:37.807

A. System performance

The Wazuh manager described in this paper is installed on

an Ubuntu virtual machine which is assigned 8GB of RAM

(Random Access Memory), 4 cores and 30GB of storage. It

aggregates data from a total of 5 servers in the network. Of the

allocated resources, the system uses about 4.7GB of RAM, a

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.6 - Page 4 of 5 ISBN 978-86-7466-930-3

negligible percentage of CPU load, and about 11G of storage

is filled. The system uptime is 2 months.

V. CONCLUSION

The aim of this paper is to present the functionality of the

Wazuh tool in detecting attacks demonstrated on web servers.

Web servers are components that are very exposed to the

Internet and if they are not well protected, they are very

susceptible to attacks of various kinds. In order to prevent

attacks, they must first be detected and that is why Host

Intrusion Detection systems are used. One of the solutions that

can help is Wazuh. It is a powerful tool that displays all

detected attacks in great detail and in real-time. Although this

paper demonstrates the analysis of detected attacks on web

servers, Wazuh is a tool used to analyze attacks across the

entire infrastructure. This paper presents the basic principle of

operation of Wazuh tools based on the agent-manager system.

Agents installed on hosts send the log data for processing to

the manager. Statistics of different types of attacks are

presented and special attention is paid to details concerning

some well-known attacks such as SSH brute force. The attack

was successfully detected and shown almost immediately. As

further work, the installation of agents on all infrastructure

devices is proposed, without limiting on the type of device. It

would be desirable to integrate the Wazuh tool with an

antivirus software in order to get deep inspection on viruses,

worms trojans and other malicious content. Some security

issues are most successfully detected by inspecting a server’s

actual network traffic, which is generally not accounted for in

logs. This is where a Network Intrusion Detection System can

provide additional insight into security. One of those systems

is Suricata. Because Suricata is capable of generating JSON

(JavaScript Object Notation) logs of events, it has very good

integration option with Wazuh, so this is also a proposal to

future work.

ACKNOWLEDGEMENT

This paper was done at Vlatacom Institute on project P158

and partially supported by the Ministry of Education, Science

and Technological Development of the Republic of Serbia

(grant number 2022/200103).

REFERENCES

[1] M. Moh, S. Pininti, S. Doddapaneni, T.S. Moh “Detecting Web Attacks
Using Multi-Stage Log Analysis”, 6th IEEE International Conference on

Advanced Computing,2016, doi: 10.1109/IACC.2016.141

[2] I. Ghafir, V. Prenosil, J. Svoboda, M. Hammoudeh, “A survey on
Network Security Monitoring Systems”, 4th International Conference on

Future Internet of Things and Cloud Workshops, 2016, DOI:
10.1109/W-FiCloud.2016.30

[3] R. M. Muhammad, I. D. Irawati, M. Iqbal “Integrated Security System

Implementation for Network Intrusion”, Journal of Hunan University,

vol. 48, no. 6, pp. 183-188, June, 2021.
[4] O. Negotia, M. Carabas “Enhanced Security Using Elastic Search and

Machine Learning”, Advances in Intelligent Systems and Computing,

vol. 1230, July, 2020.
[5] Wazuh documentation overview,

https://documentation.wazuh.com/current/, last visited 28.4.2022

[6] Wazuh documentation components,

https://documentation.wazuh.com/current/getting-

started/components/index.html last visited 28.4.2022.

[7] F. Mulyadi, L. A. Annam, R. Promya and C. Charnsripinyo,
“Implementing Dockerized Elastic Stack for Security Information and

Event Management”, 5th International Conference on Information
Technology, 2020. DOI: 10.1109/InCIT50588.2020.9310950

[8] J. Chandler, “Evaluating Open-Source HIDS with Persistence Tactic of

MITRE att&ck”, SANS Institute, 2021.
[9] Wazuh documentation, mitre, available at

https://documentation.wazuh.com/current/user-

manual/ruleset/mitre.html, last visited 29.04.2022.
[10] Wazuh documentation regulatory compliance, available at

https://documentation.wazuh.com/current/getting-started/use-

cases/regulatory-compliance.html, last visited 29.04.2022.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI2.6 - Page 5 of 5 ISBN 978-86-7466-930-3

Abstract—We present an infrastructure for simulating

simplicial complexes. The classes for storing the structure of

simplicial complexes and simplices are explained in detail, for

arbitrary dimension.

The implementation is tested using functions for seeding

simplicial complexes and for printing them on the screen. Beside

these functions, the supporting classes and the function for

assigning unique identifiers and screen coordinates is also

explained.

Results of simulation show that there are potentials for the

simulator to be used for big data problems, although appropriate

experimental results are still being collected. Future work

includes parallelizing the execution of the simulator using

supercomputing architectures.

Index Terms— Simplicial complex; triangulation; manifold;

algebraic topology.

I. INTRODUCTION

A manifold is one of the fundamental concepts in

mathematics [1], and its importance in applications in physics,

technology and engineering cannot be overstated. Virtually all

modern physics describes the world using field theory [2], in

which all physical quantities (fields) are represented as

functions over some manifold (for example, spacetime). In

technology, manifolds appear in all forms and guises,

whenever one needs to deal with curved surfaces --- from civil

engineering to graphics in video games.

While most of the interest in science and engineering

revolves around smooth manifolds, for the purpose of

studying manifolds using numerical techniques, the attention

focuses on the so called piecewise-linear manifolds [3], which

can intuitively be imagined as a structure made out of small

flat cells called simplices, arranged like bricks into a structure

which models a manifold. The procedure of approximating a

smooth manifold with a piecewise-linear one is commonly

called triangulation, see Fig. 1.

Within the framework of algebraic topology, the formal

mathematical structure which describes piecewise-linear

manifolds is called a simplicial complex. For the purpose of

this article, we provide an informal descriptive definition of a

Dušan Cvijetić is a student of the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia

(e-mail: dusancvijetic2000 @ gmail.com).

Nenad Korolija is with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

nenadko @ etf.bg.ac.rs).

Marko Vojinović is with the Institute of Physics, University of Belgrade,
Pregrevica 118, 11080 Pregrevica, Serbia (e-mail: vmarko @ ipb.ac.rs).

simplicial complex, without mathematical rigour. A simplicial

complex is a combinatorial structure, containing the

information about simplices of various dimensions that make

up a complex, and the information about how simplices are

connected to each other. A k-simplex is an elementary

building block of a simplicial complex. It is an elementary

geometrical “cell” of dimension k, which is being used to

build simplices of higher dimension, and the entire simplicial

complex. For k = 0, the simplex is called a vertex, it is

represented geometrically as a single point, and has no

internal structure. The k = 1 simplex is called an edge,

geometrically represented as a single straight line, having two

vertices at its boundary. For k = 2, the simplex is a triangle,

having three boundary edges and three vertices. The case

k = 3 describes a tetrahedron, having four boundary triangles,

six edges and four vertices. One can go further into higher

dimensions: k = 4 represents a simplex called pentachoron – it

is a 4-dimensional figure, having five boundary tetrahedra, 10

triangles, 10 edges and five vertices. In general, one can

introduce a k-simplex for arbitrary dimension k, also called

level.

Fig. 1. Simplicial complex of a torus (source: Wikipedia).

Given a set of simplices, one can “glue them up” into a

bigger geometrical structure, called simplicial complex. In

order to describe a manifold of dimension D, a simplicial

complex is constructed by gluing a set of D-simplices by

identifying their common boundary (D-1)-simplices.

Naturally, this implies the identification of all corresponding

sub-simplices of level k < D-1 as well. The resulting

simplicial complex is homeomorphic to a piecewise-linear

manifold of dimension D.

The most important information about the simplicial

complex, aside from its dimension D, is the data that tells one

Infrastructure for Simulating n-Dimensional

Simplicial Complexes

Dušan Cvijetić, Nenad Korolija, and Marko Vojinović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 1 of 5 ISBN 978-86-7466-930-3

which simplices are glued to which. This gives rise to a notion

of a neighborhood of a k-simplex, which is a set of all

simplices which contain a given simplex as its sub-simplex

(called super-neighbors) and simplices which are contained in

a given simplex (called sub-neighbors). Each k-simplex (for

0 ≤ k ≤ D) in the complex has its set of neighbors, where by

definition a simplex is not a neighbor of itself (this is

convenient to avoid infinite loops when traversing a

complex). The neighborhood structure of the entire complex

determines the topology of the corresponding manifold.

While manifolds of various topologies are important in

their own right in mathematics, the applications in physics and

engineering typically introduce functions over manifolds,

such as distances, areas and volumes, temperature, electric

and magnetic fields, etc. In the language of simplicial

complexes, these functions are commonly called colors, and

are assigned to simplices of various level k within the

complex. Given a k-simplex, one can assign to it multiple

colors, representing the value of a given function when

evaluated on the k-simplex. A prototype example of colors is

the geometry of a simplicial complex: each k-simplex is

assigned its “size” according to its geometry --- each 1-

simplex (an edge) is assigned a real number representing its

length, each 2-simplex (a triangle) is assigned a real number

representing its area, tetrahedra are assigned volumes, and so

on. Other examples are abound --- vertices can be assigned a

temperature, edges can be assigned vectors of electric field,

and so on. Depending on the problem at hand, one may or

may not impose relationships between various colors, such as

that the area of a triangle is consistent with the length of its

edges, or similar. These relationships are collectively called

constraints.

In most everyday applications, one is interested in

manifolds of dimension 1 and 2 (curves and surfaces).

However, within the context of theoretical physics, one often

needs to deal with manifolds of higher dimension – most

commonly 3, 4, 5, 10, 11 and 26, while more sporadically

anything in between and above. One of the typical scenarios is

quantum gravity [4,5], a vast research area of fundamental

theoretical physics, where the notion of spacetime is described

as a piecewise-linear manifold of dimension D=4 or higher

[6,7]. In order to apply numerical techniques to study the

manifolds in such research disciplines, it is necessary to

formulate and implement structures and algorithms which

describe colored simplicial complexes of arbitrarily large

dimension, in a uniform and optimal way. In what follows, we

describe one such implementation, which is purposefully

designed to mimic the mathematical structure of a simplicial

complex as close as possible, while simultaneously providing

efficient numerical techniques for the manipulation and study

of such structures.

I. N-DIMENSIONAL SIMPLICIAL COMPLEXES

This section describes the structure of simplicial

complexes, and explains an example C++ implementation of

classes for storing simplicial complexes.

Simplicial complexes consist of k-simplices at different

levels. Given a simplicial complexes of dimension D, these

elements include k-simplices for each level from zero to D.

Elements at level zero are vertices, elements at level one are

edges, elements on level two are triangles, etc. Finally, there

are elements of highest level D. The representative source

code of class for simplicial complexes is given in Algorithm 3

from the Appendix. The source code is pruned from

comments and unnecessary functionalities for the presentation

of the simulator.

K-simplex stores the level it has, the dimension of the

simplicial complex it belongs to, neighboring elements and

colors assigned to it.

Neighboring elements of a k-simplex are defined as k-

simplices that this k-simplex is touching. Since these can be

on various levels, the structure of neighbors is the same as for

the simplicial complex. Therefore, the two main classes are

mutually connected.

Printing SimpComp tetrahedron, D = 3

Simplices k = 0:

1, 2, 3, 4

Simplices k = 1:

(1-2), (1-3), (1-4), (2-4), (2-3), (3-4)

Simplices k = 2:

(1-2-3), (1-3-4), (1-2-4), (2-3-4)

Simplices k = 3:

(1-2-3-4)

Fig. 2. Tetrahedron and a corresponding output of the simplicial complexes

simulator.

One possible implementation of the neighboring elements

is to store only neighbors from one level above, and one level

beneath (first sub-neighbors and first super-neighbors). The

lower- and higher-level neighbors can be deduced following

the structure of the first neighbors. However, we have opted

for storing neighbors from all levels, giving us the opportunity

to divide the structure onto multiple computing nodes and run

the code in parallel. At current state, the simulator is running

on a single CPU.

The instructions a CPU is executing are repeated over and

over again, which makes this simulator suitable for

acceleration using the dataflow paradigm [8,9]. The effort

required for programming such architectures is higher than for

conventional von Neumann architectures [10], but the

simulator is suitable for transforming the C++ source code

automatically [11]. Executing multiple simplicial complex

operations in parallel requires appropriate scheduling

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 2 of 5 ISBN 978-86-7466-930-3

techniques [12].

Each k-simplex (including all vertices, edges, triangles,

etc.) can be colored with different types of color. Example

colors include:

- k-simplex name,

- unique identifier of k-simplex,

- boundary color of k-simplex,

- screen coordinates.

These colors are included in our simplicial complex

simulator, but the structure of the simulator allows adding

additional user defined colors.

The representative source code of the class for k-simplices

is given in Algorithm 4 from the Appendix. Just like it is the

case with simplicial complexes, this source code is pruned for

better clarity.

For simulation purposes, we have developed functions for

seeding simplicial complexes at various levels, as it will be

explained in the following section. In addition, coloring and

printing simplicial complexes is also implemented. Pretty

printing (or compact printing) prints k-simplices at all levels,

where k-simplices of level higher than zero are printed as

tuples consisting of unique identifiers (IDs) of their vertices.

Fig. 2 shows an example tetrahedron (i.e. simplicial complex

of dimension D = 3 consisting of a single 3-simplex and its

sub-simplices) whose vertices are colored with unique

identifiers that auto-increment after each assignment of the

unique color to a vertex. Details of the implementation of

compact printing is also explained in this manuscript.

Screen coordinates can be attached to vertices of the

tetrahedron. Therefore, it can be drawn on the screen.

However, there is no need to assign coordinates. They are just

a convenient way to show an object on a screen. Similarly,

there is no need to assign unique ID to any vertex. In the

previous example, if a vertex with unique ID four would not

have a unique ID assigned to it, the tetrahedron could still be

printed out, but with word “Simplex” being printed out in

place of number four.

II. SEEDING SIMPLICIAL COMPLEXES

This section describes seeding simplicial complexes using

C++ implementation of function seed_single_edge(). The

example source code for seeding a single edge is used for

demonstrating purposes.

The process of seeding simplicial complexes will be

explained using the source code shown in Algorithm 1. The

source code is pruned from comments and unnecessary

statements. Seeding a simplicial complex consists of the

following steps, and statements in Algorithm 1 follow the

same principle in the same order:

- creating an empty simplicial complex of given dimension,

- creating k-simplices for storing vertices and simplices of

higher levels,

- connecting vertices at each level with vertices on higher

and lower levels.

Adding a neighbor to a k-simplex is a symmetric operation.

This means that both k-simplices (the calling one and the one

given as an argument) are neighbors to each other. All

functions of the simulator are written in a robust manner,

checking the validity of input parameters.

Note that multiple colors can be assigned to each k-

simplex, which is left out of consideration in this algorithm

for better clarity.

III. COLORING AND PRETTY PRINTING K-SIMPLICES

This section describes coloring and pretty printing

simplicial complexes. These functions might work in pair, but

are not necessarily connected.

A. Coloring K-simplices

Coloring k-simplices will be explained using Algorithm 2

by coloring vertices of an edge with boundary colors. First,

vertices have to be created as k-simplices of level zero. Then,

colors have to be created for all vertices. Finally, colors need

to be pushed back to the vector of colors that each k-simplex

has.

Algorithm 1: Seeding a single edge.

SimpComp* seed_single_edge(string name){
 SimpComp *edge = new SimpComp(
 name, 1);

 KSimplex *v1 =
 edge->create_ksimplex(0);

 KSimplex *v2 =
 edge->create_ksimplex(0);
 KSimplex *e1 =

 edge->create_ksimplex(1);
 v1->add_neighbor(e1);

 v2->add_neighbor(e1);
 return edge;
}

Algorithm 2: Coloring vertices with boundary color.

KSimplex *v1 =

 edge->create_ksimplex(0);
KSimplex *v2 =

 edge->create_ksimplex(0);
Color *c1 = new BoundaryColor(true);
Color *c2 = new BoundaryColor(true);

v1->colors.push_back(c1);
v2->colors.push_back(c2);

Following colors are currently available:

- unique ID colors

- boundary colors

- screen coordinate colors.

Additionally, user is allowed to construct a custom color

and use it within the simulator. The source code of the

simulator is organized as a library, and user is allowed to

extend it by using the library.

Unique ID colors are predominantly used for pretty printing

simplicial complexes. They are implemented by a class

inherited from the basic color class. Two main fields include

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 3 of 5 ISBN 978-86-7466-930-3

static integer number, and an integer number. The first

represents the current maximum of a unique color ID that is in

use, and the second one is the color of a given k-simplex.

Unlike unique ID colors, boundary colors have special

meaning. Each k-simplex may contain boundary color, but it

does not have to. A simplicial complex can have boundaries

on k-simplices of one level lower than the dimension of the

simplicial complex. For example, a triangle can have edges as

boundaries.

Screen coordinate colors are used for drawing simplicial

complexes on a screen. The basic graphical user interface is

under development.

B. Pretty Printing K-simplices

Printing k-simplices includes printing of all of the fields

that KSimplex class contains. This includes printing all of the

neighborhood elements the k-simplex has. This is usually

overwhelming for a user. Therefore, pretty printing is

designed to print unique ID colors of each k-simplex in most

readable way authors could think of.

Function KSimplex::print_compact() is responsible for

pretty printing. It assigns to the pointer to the unique ID a

value returned by a function get_uniqueID() that returns either

nullptr if a k-simplex doesn’t have a unique ID, or a pointer to

the color.

If there is no unique ID color assigned to a k-simplex, the

output consists solely of word “Simplex”. Otherwise,

print_compact() function is called for a color that the pointer

points to. Further, the following procedure is repeated, if level

k is greater than zero and there are neighboring elements for

all neighbors. A set of integer values is constructed, and then

function print_vertices_in_parentheses(s) is called for

neighbors, adding unique IDs to the set. This way, printing

sorted values is achieved, along with avoiding duplicate

values. Sample output of a simplicial complex pretty printing

is shown in Fig. 1.

IV. CONCLUSION

We have demonstrated how one can implement in code the

structure of a simplicial complex of arbitrary dimension, in a

way that is faithful to its combinatorial definition, and

perform the most basic operations on it, like instantiating,

coloring and printing.

The implementation of the basic classes of the code

described in this work represents a fundamental basic building

block for a more versatile software collection that aims to

construct, manipulate and study the properties of simplicial

complexes of arbitrary dimension. Future extensions of the

software library will include the functions which implement

attaching additional simplices to a boundary of a complex,

performing Pachner moves [13] which transform a given

complex into a different one without changing its topology,

and functions for manipulating the colors and evaluating

various mathematical constructions that include them. Note

that the experimental data regarding the parallelization is yet

to be collected (see the accompanying paper [14]).

The resulting software collection will feature the generality

and versatility that aim for applications both in pure

mathematics (algebraic topology research) and theoretical

physics (quantum gravity, field theory), but also with potential

applications in other disciplines of engineering and industry,

wherever the analysis and the study of geometry of manifolds

and curved surfaces may be relevant.

APPENDIX

Algorithm 3: Declaration of SimpComp class.

class SimpComp{

public:
 SimpComp(int dim);

 SimpComp(string s, int dim);
 ~SimpComp();
 int count_number_of_simplexes(

 int level);
 void print(string space = "");

 bool all_uniqueID(int level);
 void collect_vertices(set<int> &s);
 void print_set(set<int> &s);

 void print_vertices_in_parentheses(
 set<int> &s);

 void print_compact();
 // Creating new KSimplex at level k:
 KSimplex* create_ksimplex(int k);

 void print_sizes();

 string name;
 int D;
 // An element at each level

 // is a list or vector
 // of KSimplex pointers

 // to KSimplex on that level:
 vector< vector<KSimplex *> >
 elements;

};

Algorithm 4: Declaration of KSimplex class.

class KSimplex{
public:

 KSimplex();
 KSimplex(int k, int D);

 ~KSimplex();
 bool find_neighbor(KSimplex *k1);
 void add_neighbor(KSimplex *k1);

 void print(string space = "");
 UniqueIDColor* get_uniqueID();

 void print_compact();

 int k; // level

 int D; // dimension
 SimpComp *neighbors;

 vector<Color *> colors;
};

ACKNOWLEDGMENT

DC and NK were partially supported by the School of

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 4 of 5 ISBN 978-86-7466-930-3

Electrical Engineering, University of Belgrade, Serbia. NK

was partially supported by the Institute of Physics Belgrade,

contract no. 0801-1264/1. MV was supported by the Science

Fund of the Republic of Serbia, grant no. 7745968, “Quantum

gravity from higher gauge theory” – QGHG-2021. All authors

were partially supported by the Ministry of Education,

Science, and Technological Development of the Republic of

Serbia.

REFERENCES

[1] M. W. Hirsch, Differential Topology, New York, USA: Springer Verlag,

1976.
[2] A. Hobson, “There are no particles, there are only fields”, Amer. Jour.

Phys. 81, 211-223 (2013).

[3] E. H. Spanier, Algebraic Topology, New York, USA: Springer Verlag,
1966.

[4] C. Rovelli, Quantum Gravity, Cambridge, UK: Cambridge University

Press, 2004.
[5] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity,

Cambridge, UK: Cambridge University Press, 2014.

[6] T. Radenković and M. Vojinović, “Higher Gauge Theories Based on 3-

Groups”, JHEP 10, 222 (2019).

[7] A. Miković and M. Vojinović, “Standard Model and 4-Groups”,

Europhys. Lett. 133, 61001 (2021).

[8] B. Lee and A. R. Hurson, “Issues in dataflow computing,” Advances in
computers, Elsevier, 37, 285-333 (1993).

[9] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L.

Petrovic, “Transforming applications from the control flow to the
dataflow paradigm,” Dataflow supercomputing essentials, Springer,

Cham, 107-129 (2017).

[10] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort estimation
accuracy based on use case point size,” IET Software, 9(6), 166-173

(2015).

[11] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-
based parallelization of control-flow algorithms,“ Advances in

computers, Elsevier, 104, 73-124 (2017).

[12] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime job
scheduling algorithm for cluster architectures with dataflow

accelerators,” Advances in computers, Elsevier, 126 (2022).

[13] U. Pachner, “PL homeomorphic manifolds are equivalent by elementary

shellings”, Eur. Jour. Combinat. 12, 129-145 (1991).

[14] D. Cvijetić, N. Korolija and M. Vojinović, “Possibilities for

Parallelizing Simplicial Complexes Simulation”, IcETRAN 2022, Novi
Pazar, Republic of Serbia, June 6-9, 2022, Belgrade: Društvo za

ETRAN, Beograd: Akademska misao (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.1 - Page 5 of 5 ISBN 978-86-7466-930-3

Abstract—This manuscript presents potentials for

parallelizing simulation of simplicial complexes. The

implementation of most important fields and methods of

classes for storing simplicial complexes and k-simplices is

followed by wrapper classes for simplicial complexes and k-

simplices respectively. Infrastructure for communication

between Message Passing Interface (MPI) processes along with

helper functions is explained further in the manuscript. Once

multiple data are prepared to be sent from each MPI process

to other MPI processes, sending and receiving is performed in

the background. Because of the stall introduced by using MPI

directives, the amount of data to be transmitted is maximized

by processing multiple operations over simplicial complexes in

parallel. This requires the method for locking simplicial

complexes and k-simplices by the owner MPI process until all

the requests are processed. Locking mechanism and supporting

simplicial complex class actions regarding locking is not in the

scope of this manuscript.

Index Terms—Simplicial complex; k-simplex; triangulation;

manifold; MPI; parallelization.

I. INTRODUCTION

In modern theoretical physics, a lot of problems are too

complicated for study using analytical methods, and one

needs to resort to numerical techniques. Among those

problems, an especially important class deals with

evaluation of functions over simplicial complexes. A

simplicial complex [1] is a piecewise-linear approximation

of a smooth spacetime manifold [2] and is typically 4-

dimensional or higher. Functions over a simplicial complex

represent physical fields on spacetime, and one commonly

employs path integral evaluations of such structures to

extract expectation values of observables. For example, in

Lattice Quantum Chromo-dynamics, one employs such

numerical techniques to predict the theoretical values for the

masses of elementary particles called hadrons [3]. Also, in

Causal Dynamical Triangulations approach to quantum

gravity [4,5], one uses these techniques to evaluate spectral

dimension of spacetime, and study various properties of

phase space of triangulated manifolds. Finally, in the Regge

Quantum Gravity approach [6,7,8] one can study the

entanglement properties of matter fields and gravity

described by the Hartle-Hawking wavefunction [9,10], again

using the techniques of numerical evaluation of path

Dušan Cvijetić is a student of the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,
Serbia (e-mail: dusancvijetic2000 @ gmail.com).

Nenad Korolija is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
nenadko @ etf.bg.ac.rs).

Marko Vojinović is with the Institute of Physics, University of Belgrade,

Pregrevica 118, 11080 Pregrevica, Serbia (e-mail: vmarko @ ipb.ac.rs).

integrals over simplicial complexes.

It goes without saying that all such calculations are

exceptionally expensive in computation time. Typically, one

develops custom-made code, heavily optimized to solve

precisely one specific problem, and executes it over months-

long periods on hardware dedicated for high performance

computing (HPC), usually clusters with thousands of work

nodes. Such enormous calculational efforts are usually

unavoidable due to the nature of the problems that need to

be solved.

Nevertheless, at least for one class of such problems, it

may be possible to construct a more general algorithm and

structures which would provide a common basis for solving

an all-encompassing class of problems using the same

underlying software, while intrinsically exploiting the

parallelization possibilities of the code itself and the

distributed nature of the underlying hardware. Our aim is to

develop such a generic software library, which could be

used to solve a whole host of physics problems in the same

way and optimize it for parallelized HPC environments. In

this work we present the first steps towards the construction

of such a library. This approach of developing common

code for a whole class of problems has not been attempted

so far because research teams are usually concentrated on

solving only one specific problem and opt to construct

custom code for that problem. However, in our opinion, a

generic software library, which would provide support for a

whole class of problems simultaneously, would open new

avenues for numerical research, since one could use the

same code to study new, yet unexplored problems as well as

old well-known ones.

Fig. 1. Simplicial complex of a torus (source: Wikipedia).

The fundamental structure which lies at the core of the

whole numerical method is the notion of a simplicial

complex. A simplicial complex is a combinatorial structure

which is easiest to understand as a generic lattice-like mesh,

Possibilities for Parallelizing Simplicial

Complexes Simulation

Dušan Cvijetić, Nenad Korolija, and Marko Vojinović

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 1 of 5 ISBN 978-86-7466-930-3

whose cells are called simplices, and are connected to each

other along their boundaries to form the simplicial complex

of a given dimension. The purpose of the whole structure is

to approximate the smooth spacetime manifold with a

discrete structure which is more convenient for numerical

methods.

 The most elementary simplex is a simplex of level zero,

often called 0-simplex or vertex – it is just a dimensionless

point with no structure. Next is the 1-simplex, also called an

edge – it is a one-dimensional line with two vertices at its

boundaries. At level two we have the 2-simplex or triangle,

whose boundary are three edges and their vertices. The 3-

simplex, also known as the tetrahedron, has the boundary

made of four triangles and their edges and vertices. The

procedure of constructing simplices can be done for

arbitrary dimension, giving rise to the notion of a k-simplex,

whose level (i.e. natural dimension of space in which it is

defined) is equal to any positive integer k. The most

commonly used example is the 4-simplex, also called

pentachoron – a 4-dimensional figure whose boundary

consists of 5 tetrahedra, 10 triangles, 10 edges and 5

vertices. In most applications in physics, the spacetime

manifold is considered to be 4-dimensional, and it is cut into

a lattice-like structure made of 4-simplices, which are glued

together along their boundary tetrahedra. The resulting

structure is a simplicial complex of dimension 4. Fig. 1

depicts an intuitive example of a 2-dimensional simplicial

complex of a torus.

Given a simplicial complex, one typically wants to

introduce functions that are evaluated on it. These are

commonly called colors and are assigned via their values to

each k-simplex within in the complex. In other words, some

colors live on vertices, some on edges, some on triangles,

and so on. The colors are a natural discretization of the

notion of a field over a manifold. For example, just like

electric and magnetic fields have a value at each point of a

smooth spacetime, analogously the colors have values at

each k-simplex in the simplicial complex.

Depending on the type of the problem at hand, algorithms

that are used to evaluate required quantities on a simplicial

complex can vary in complexity, from conceptually simple

Monte Carlo integration techniques, to vastly complicated

traversal and ray-tracing algorithms, to various methods for

solving functional partial differential equations. Due to the

variability of the complexity of all these algorithms, dictated

by the nature of the problem at hand, it is helpful to develop

the underlying software simulator to exploit the

parallelization avenues that are intrinsic to the simplicial

complexes and k-simplices themselves, so that the simulator

can exploit parallel hardware environments even for

algorithms that are themselves hard to parallelize. This helps

the code developer with overall optimization and application

to HPC hardware architectures. In what follows, we shall

demonstrate a set of possible approaches to these intrinsic

parallelization techniques.

II. N-DIMENSIONAL SIMPLICIAL COMPLEXES

This section describes data structures used in the

simulator of simplicial complexes from the point of view of

their suitability for parallelizing the simulator execution.

Data demanding structures are of main interest for

optimizing the communication between processing units.

Along with those, data that describes the structure and needs

to be updated on multiple processing units will be described

in detail. Further, the amount of data that needs to be

exchanged and the frequency of expected changes will be

compared to the pyramid, where top elements demand less

memory, but require more often communication.

The parallelization is simulated using the MPI

framework. The simulator is implemented in C++, and, as a

result, the parallelization framework is built on top of the

simulator. As improving the simulator of simplicial

complexes is an ongoing process, the possibility for

accelerating the computation is simulated based on the

requirements.

Simplicial complexes are formed out of k-simplices at

various levels. Simplicial complexes at level zero represent

vertices. The structure of each vertex is stored in KSimplex

class. Simplicial complexes at level one represent edges.

Each edge consists of two vertices. As it is the case with

vertices, information about edges are also kept in a

KSimplex class. However, while vertices can be independent

of other vertices, representing separate simplicial

complexes, each edge must have at least two vertices

defined as neighbors. Neighbor of an k-simplex is defined

also as a k-simplex that the first k-simplex relies on.

Neighboring relation is symmetrical. Therefore, if two

vertices are neighbors of an edge, edge is also the neighbor

of both vertices. Further, edges can form a triangle. By

analogy, neighbors of triangle are three edges, but also the

triangle is neighbor of these edges. The neighboring relation

spans more than one level up or down. The triangle has also

three vertices as neighbors and the opposite.

Simplicial complex representing a triangle consists of a k-

simplex representing a triangle along with all neighbors of

the triangle. Simplicial complex class is used for storing

information about simplicial complexes. As it has elements

field that is a pointer to pointer of k-simplices, it is also used

for keeping neighbors of each k-simplex.

III. PARALLELIZING SIMPLICIAL COMPLEXES SIMULATION

Parallelizing operations over simplicial complexes is

implemented by splitting the structure over multiple MPI

processes. First, we can consider a single simplicial complex

system, as the most general approach. If no screen

coordinates for k-simplices are assigned, we can artificially

assign this type of color, so that we can present k-simplices

in 2D space. Further, we can imagine multiple planes, where

each plane is responsible for keeping k-simplices of one

dimension. This way, we can consider n-dimensional

simplicial complex as a pyramid that we observe from the

bird's eye view. Now we could have a bottom-up approach,

where k-simplices of dimension zero are divided onto MPI

processes based on their screen coordinates. Going up, each

MPI process would store higher dimensional k-simplices

that have those that are one level below as their neighbors.

When a k-simplex has neighbors on one level below that

belong to multiple MPI processes, this k-simplex gets

copied to all MPI processes involved. Finally, all MPI

processes would keep the highest-level k-simplex. In the

case of multiple simplicial complexes, they could be split

over MPI processes based on the same bottom-up approach.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 2 of 5 ISBN 978-86-7466-930-3

The notion of determining the MPI process where a k-

simplex is located is hidden by using wrapper functions, so

that the calculation operations are performed as if all k-

simplices would have been on the same MPI process, i.e. as

if the simulation was executed serially. Each wrapper

function can keep either a pointer to the structure, if it exists

on the same MPI process, and the ID used for finding the

structure on the owner MPI process.

Algorithm 1 describes the most important aspects of

simplicial complex classes. First, a basic SimpComp class is

given, followed by the wrapper class VirtualSimpComp used

for parallelization.

Algorithm 1: Declaration of simplicial complex classes.

class SimpComp{

public:
 SimpComp(int dim);
 SimpComp(string s, int dim);

 ~SimpComp();
 // Creating new KSimplex

 // at level k:
 VirtualKSimplex* create_ksimplex(
 int k);

 void update_owner(int owner);

 string name;
 int D;
 vector< vector<

 VirtualKSimplex *> > elements;
};

class VirtualSimpComp{
public:
 SimpComp *find_simpcomp;

 int id;
 int ownerRank;
 SimpComp *simpComp;

};

Algorithm 2 describes the most important aspects of k-

simplices classes. A basic KSimplex class is followed by the

wrapper class VirtualKSimplex used for parallelization.

Algorithm 2: Declaration of k-simplex classes.

class KSimplex{
public:

 KSimplex();
 KSimplex(int k, int D);

 ~KSimplex();
 bool find_neighbor(
 VirtualKSimplex *k1);

 void add_neighbor(
 VirtualKSimplex *k1);

 int k; // level
 int D; // dimension

 VirtualSimpComp *neighbors;
 vector<Color *> colors;

};
class VirtualKSimplex{
public:

 KSimplex *find_ksimplex();

 int id;

 int ownerRank;
 KSimplex *ksimplex;

};

In both algorithms, wrapper functions store a pointer to

the base class object, if such exists on a local MPI process.

Otherwise, the value is nullptr, and the data is searched for

on the so called ownerRank based on unique identifier called

id. Owner of this k-simplex can issue multiple requests

while it holds a lock.

IV. INFRASTRUCTURE FOR COMMUNICATION BETWEEN MPI

PROCESSES

The communication between MPI processes is organized

as follows. Each MPI process is preparing the data to be sent

to other MPI processes. Order of operations prepared for

other MPI processes is not important. All requests to other

MPI processes for processing are packed in to_rank vector

of vectors of unsigned char.

Each type of primitive data is serialized into the array of

unsigned characters as it will be explained in the following

section. Each prepared byte is pushed to the back of the

vector of unsigned characters. Once all the data is prepared,

the data is sent to other MPI processes in the background

using MPI_Isend directive. If a reference to the vector of

array of unsigned characters is called vec, the pointer to the

array is obtained by calling member function data() of

vector class from standard template library. After issuing all

MPI_Isend directives, waiting for each of sending to finish

is achieved using MPI_Wait.

Similarly receiving the data from other MPI processes is

implemented in the background using MPI_Irecv, followed

by MPI_Wait, once the data is needed for the processing.

The data is received into array of unsigned characters, that is

further packed into vector of vectors of unsigned characters

called from_rank for simple processing.

V. MPI SUPPORTING FUNCTIONS

As already mentioned, variables are serialized into the

array of unsigned characters using the following syntax:

*((__typeof__ (variable) *) (array + nArray)) = variable;

nArray += sizeof(variable);

Here, array is array of unsinged characters where the data

stored in the variable is serialized, and nArray is the number

serialized bytes in the array.

Similarly, a variable is read and prepared into the to_rank

using the following syntax:

__typeof__ (variable) temp_var = variable; \

int nBytes = sizeof(temp_var); \

for(int iByte = 0; iByte < nBytes; iByte++) \

 to_rank[rankNumber].push_back(

 ((unsigned char *) &temp_var) [iByte]);

This can be further optimized, but the optimization is out

of the scope of this research.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 3 of 5 ISBN 978-86-7466-930-3

The communication between MPI processes is continued

for as long as any MPI process requires further

communication with other MPI processes. This is achieved

using the following source code, where the MPI process that

requires further communication sets variable to_send to one:

int to_receive = 0; // A rank required communication

MPI_Allreduce(&to_send, &to_receive, 1, MPI_INT,

 MPI_SUM, MPI_COMM_WORLD);

After MPI_Allreduce is executed, all MPI processes will

have the information whether they have to communicate

further in to_receive variable.

VI. PARALLELIZATION POSSIBILITIES USING DATAFLOW

PARADIGM

This simulator issues the same set of computer

architecture instructions repeatedly. As in majority simulator

of physical phenomena, the number of instructions is

dependent on the precision of the model and is limited by

the computing resources and the total simulation time

requirement. These conditions are exactly what is required

for a program to be suitable for acceleration using the

dataflow paradigm [11]. Programming dataflow

architectures requires programming skills that are higher

than those needed for programming conventional von

Neumann architectures. One of the possibilities is to write a

program in a VHDL. More suitable solution to most of the

programmers would be to exploit the framework that

enables writing source code in a Java-like language, which

gets automatically translated into the FPGA image [12,13].

Even in this case, the effort needed for programming such

architectures is higher [14]. Besides programming dataflow

architecture for the simplicial complex simulator,

appropriate scheduling scheme is also needed for efficient

running of multiple jobs simultaneously [15].

As the number of operations that can be applied to

simplicial complexes can lead to several days’ simulation

time or even more, having in mind the aging and the

probability of failure of supercomputing nodes [16], we

have decided to write restarts after given number of

simulations defined by the user, so that the calculation can

continue from the last stored state.

VII. CONCLUSION

In this work we have presented the basics of the

paralellization techniques that can be applied to the structure

of a simplicial complex, which underlies a host of research

problems in theoretical physics (see also our accompanying

paper [17]). These problems tend to be computationally

extremely expensive, and the common underlying software

that enables parallelization at the level of the basic data

structure can possibly go a long way towards optimization

of code for numerical study using heavily parallel hardware

platforms such as HPC clusters. In particular, the simplicial

complex naturally allows for various aspects of

parallelization, and we have described the basic classes,

corresponding MPI communication infrastructure,

supporting functions and the dataflow paradigm employed

for the construction.

 One should note that our work represents just a first step

towards a full working software implementation, and much

more effort is needed to properly implement, optimize and

test the resulting code in real world environments. All that is

the topic for future work. In particular, the data regarding

the experimental evaluation, which would compare the

proposed parallelization method to ordinary sequential

methods still needs to be gathered and analyzed.

Nevertheless, this first step is fundamental, and it is

conceptually important since it represents a paradigm in

which parallelization is implemented dominantly at the level

of the simplicial complex as the underlying data structure,

rather than at the level of the particular algorithm that aims

to solve some particular problem using these data structures.

Finally, we note that our code, once properly developed,

may possibly find applications not just in theoretical

physics, but also in other disciplines of science, technology

and engineering.

ACKNOWLEDGMENT

DC and NK were partially supported by the School of

Electrical Engineering, University of Belgrade, Serbia. NK

was partially supported by the Institute of Physics Belgrade,

contract no. 0801-1264/1. MV was supported by the Science

Fund of the Republic of Serbia, grant no. 7745968,

“Quantum gravity from higher gauge theory” – QGHG-

2021. All authors were partially supported by the Ministry

of Education, Science, and Technological Development of

the Republic of Serbia.

REFERENCES

[1] E. H. Spanier, Algebraic Topology, New York, USA: Springer

Verlag, 1966.

[2] M. W. Hirsch, Differential Topology, New York, USA: Springer
Verlag, 1976.

[3] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz,

S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo and G.
Vulvert, “Ab-initio Determination of Light Hardon Masses”, Science

322, 1224-1227 (2008).

[4] J. Ambjorn, A. Goerlich, J. Jurkiewicz and R. Loll, “Nonperturbative
Quantum Gravity”, Phys. Rep. 519, 127 (2012).

[5] M. Vojinović, “Causal dynamical triangulations in the spincube

model of quantum gravity”, Phys. Rev. D 94, 024058 (2016).

[6] T. Radenković and M. Vojinović, “Higher Gauge Theories Based on

3-Groups”, JHEP 10, 222 (2019).

[7] A. Miković and M. Vojinović, “Standard Model and 4-Groups”,
Europhys. Lett. 133, 61001 (2021).

[8] A. Miković and M. Vojinović. “Quantum gravity for piecewise flat

spacetimes”, SFIN XXXI, 267 (2018).
[9] N. Paunković and M. Vojinović, “Gauge protected entanglement

between gravity and matter”, Class. Quant. Grav. 35, 185015 (2018).

[10] J. B. Hartle and S. W. Hawking, “Wave function of the Universe”,
Phys. Rev. D 28, 2960 (1983).

[11] B. Lee and A. R. Hurson, “Issues in dataflow computing,” Advances

in computers, Elsevier, 37, 285-333 (1993).
[12] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and

L. Petrovic, “Transforming applications from the control flow to the

dataflow paradigm,” Dataflow supercomputing essentials, Springer,
Cham, 107-129 (2017).

[13] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-

based parallelization of control-flow algorithms,“ Advances in
computers, Elsevier, 104, 73-124 (2017).

[14] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort

estimation accuracy based on use case point size,” IET Software, 9(6),
166-173 (2015).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 4 of 5 ISBN 978-86-7466-930-3

[15] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime

job scheduling algorithm for cluster architectures with dataflow
accelerators,” Advances in computers, Elsevier, 126 (2022).

[16] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris,

“Recycled IC detection based on statistical methods,” IEEE
transactions on computer-aided design of integrated circuits and

systems, 34(6), 947-960 (2015).

[17] D. Cvijetić, N. Korolija and M. Vojinović, “Infrastructure for
Simulating n-Dimensional Simplicial Complexes,” IcETRAN 2022,

Novi Pazar, Republic of Serbia, June 6-9, 2022, Belgrade: Društvo za

ETRAN, Beograd: Akademska misao (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.2 - Page 5 of 5 ISBN 978-86-7466-930-3

Abstract—Big data analytics is a very important topic both for

enterprises, science, and government institutions. The amount of

data that is generated is exponentially increasing and the need to

analyze data is more important every year. Big data analytics

evolved over the past decade from a large on-premises

infrastructure for storing and processing data to modern cloud

environments. In this paper we discuss how big data analytics

evolved over the years and what are the future trends in this

area.

Index Terms—Big data; cloud; analytics; machine learning;

databases.

I. INTRODUCTION

BIG data analytics is one of the most important topics in

the IT industry. There is a well-known “Data is the new oil”

expression that points out the importance of data analytics that

can have a huge effect on modern businesses and economy.

Most of the enterprises either leverage information from

their data or plan to extract information from the data they

own. Data science and analytics became more important for

strategic growth of many organizations.

The organizations and software systems are continuously

increasing the amount of data that is generated. Relatively big

organizations must face the large amount of data that contains

the information important for business decisions. Globally, we

are now talking about the Exabyte to Zettabyte scale of data

that needs to be processed. The global estimates are that the

amount of data to be processed would reach multiple

Zettabytes in this decade [1].

In this paper we discuss the industry trends and standards

for big data analytics with a focus on data analytics in the

cloud. This manuscript describes the solutions offered by the

open-source community and the biggest commercial data

analytics vendors that pave the way that will be followed by

companies. The rest of the document is organized in the

following sections:

- In the first section, we will talk about the main problems

that impact big data analytic solutions.

- The cloud analytics section describes what are the main

Danko Miladinović is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia
(e-mail: danko@etf.bg.ac.rs).

Jovan Popović is with the Microsoft Research and Development Center,

Belgrade. Španskih boraca 3/3, 11000 Belgrade, Serbia (e-mail:
jovanpop@microsoft.com).

Nenad Korolija is with the School of Electrical Engineering, University of

Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
nenadko@etf.bg.ac.rs), (https://orcid.org/1234-1234-1234-123X).

benefits of the cloud environments for big data

analytics.

- Data analytic solutions section describes the two

mainstream approaches for storing and analyzing data:

Datawarehouse and Datalakehouse solutions.

- In the data format section, we will discuss the most

important aspect of big data analytics – the format that

is optimized for storing data.

- The conclusion section summarizes the trends for

modern big data analytics.

II. PROBLEM STATEMENT

The main problem in big data analytics is the size of data.

There are many problems that can be solved by analyzing data

stored in files and spreadsheets containing gigabytes of data,

or even the relational or NoSQL databases that can contain

and process terabytes of data. However, there are many

domains where the data contains petabytes of data that cannot

be stored in a limited set of files or classic database systems.

The researchers and engineers tried to solve the problem of

big data processing using the following approaches:

- Datawarehouses that try to stretch the capabilities of the

relational databases by applying distributed processing

over large data.

- File-based processing systems that try to build an

infrastructure for storing a large amount of data. One

of the most widely used solutions is Hadoop with

HDFS file system [2].

The big data analytic solutions must ensure that users can

store Exabyte scale data and ensure that there is enough

compute power to process the data when needed. The

infrastructure teams must ensure that they have enough

hardware (processors and disk storage) to fulfil the user needs,

but at the same time to ensure that the resources are not

underutilized or constantly over-provisioned.

Solving the problem of ensuring the required resources for

big data analytics, but at the same time not over-provisioning

them, appeared to be too hard for the on-premises

infrastructure. Planning for the resources could not be both

cost effective and ensure enough capacity that will be utilized

for most of the time.

Therefore, most of the organizations tried to solve this

resource management problem in the cloud making the cloud

analytics the mainstream in the big data analytics space.

III. THE CLOUD ANALYTICS

Over the past years, the clouds became a very important

The Evolution of Big Data Analytics Solutions

in the Could

Danko Miladinović, Jovan Popović, and Nenad Korolija

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 1 of 6 ISBN 978-86-7466-930-3

choice for modern big data analytics. There are three main

benefits of cloud infrastructure that make them important for

big data analytics:

- Large amount of storage that could be used to store any

amount of data. The “Data Lake” [3] is a commonly

used term for virtually unlimited storage where the

organizations might store petabytes of data. As the

amount of data rapidly rises, the organizations need to

have an infrastructure that will guarantee that they can

easily store Exabytes of data, and with the possibility

to scale to Zettabytes in the future.

- Large amount of available compute power that could be

used for data processing [4]. The compute power

needed to analyze data is proportional to the data size

and might easily span to the thousands of CPU cores

needed to complete the data analytic tasks.

- Cloud resources can be used on-demand and released

when they are not needed. This is one of the main

reasons for choosing the cloud environment. Most of

the data analytic jobs are not continuously processed

and might require thousands of CPU cores for data

processing, and then suddenly release all the resources.

Cloud providers solve this problem using the economy

of scale – with the large number of customers there is a

high probability that someone will use them once

others release them.

We should note that the could environment is not an

absolute requirement to have an infrastructure for storing a

large amount of data and use thousands of computer cores to

process the data. The organizations might use their own data

centers, supercomputers, and any custom-built architecture

that will organize hundreds or thousands of computers that

process the data. This was a common solution for the

organizations who built their own Hadoop/HDFS

infrastructure [2] for in-house analytics. However, the cost of

management includes the need to maintain and replace the

hardware, ensure that the infrastructure has enough compute

power to satisfy the peak processing, but also to make sure

that the capacity is not too underutilized during the period

when nobody is executing analytic jobs.

The current trend is that most of the organizations are

deciding to delegate the resource management to the cloud

providers and utilize the resources on-demand when they need

to run some analytics.

The data analytics solutions should not be misguided with

the infinite scale claims of the cloud vendors. Cloud

environments are built as many computers that are working

together to process tasks. The applications see the sum of the

compute power, memory, and storage allocated to the

computers that are executing the tasks. In many scenarios, this

setup can provide “the infinite scale” promise for a variety of

applications such as web applications, easily parallelizable

functions or jobs, or the classic databases that might not

require a constant compute power of up to 128 cores. This

kind of infrastructure is the ideal choice for scaling out the

large number of small compute units such as microservices,

functions that might need to quickly replicate to. These kinds

of solutions made of a large number of micro-compute units

are perfect for the cloud environments where each unit can be

deployed on some available compute node in the cloud [5].

However, these solutions will rarely require an atomic

compute unit between 64 and 128 cores. The big data

analytics solutions with the demand to store and process

petabytes of data might require compute power that can

challenge the infinite scale promise of the clouds. In the big

data analytics solutions, we can see the impact of the physical

infrastructure where the components that process data might

require a large amount of CPU or memory needed to

decompress the large files and process the information.

Therefore, migrating data to cloud and running the analytical

functions in the compute provided by the cloud are not

enough. In practice, data analytics solutions require

specialized services such as cloud Datawarehouse [6] or cloud

Datalakehouse [7] solutions, that are able to efficiently

combine the physical resources in the cloud and optimally

process data.

IV. THE DATA ANALYTIC SOLUTIONS

Data analytics solutions provide infrastructure and tools for

the analysts and the business users that enable them to store

and analyze data. There are two main classes of data analytic

solutions:

- The Datawarehouse solutions that represent centralized

data storage with API for analyzing data and

implementing the business intelligence solutions [6].

- The Lakehouse solutions represent the analytical solution

running on the storage that is detached from the

analytical engine [7].

Both classes of the solutions are aware of the underlying

infrastructure and designed to optimally process large

amounts of data. The main differences between Data

Warehouse and Data Lakehouse solutions are given in Table

I.

TABLE I

THE KEY DIFFERENCES BETWEEN DATA WAREHOUSE AND DATA LAKEHOUSE

 Warehouse Lakehouse

Data

format

Proprietary and

highly optimized.

Based on open

specifications.

Data

location

Internal – data is

ingested from the

external source.

External – data is

placed on the original

locations.

Data

access

Through the

predefined API or

protocol (SQL)

Direct file access

using the storage API

The main trade-off between Datawarehouse and Data

Lakehouse solutions is the choice between the interactive and

the real-time analytics. The Datawarehouses store data in the

data format optimized for analytics, which enables them to

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 2 of 6 ISBN 978-86-7466-930-3

complete the queries in second-to-minute time span.

However, they require data engineers to load data from the

actual locations into the Datawarehouse, meaning that the data

analysts work with the snapshot of the data taken at the load

time. The Lakehouses reference original data in the lakes

without a need to ingest the data. However, the raw format of

the data cannot guarantee sub-second or even sub-minute

performance. Despite the differences, both Datawarehouse

and Datalakehouse solutions are used in practice. The

following sections describe the main characteristics of these

solutions.

A. Warehouse solutions

The traditional database systems containing data used for

the analytics are Datawarehouse solutions. Datawarehouse

solutions have existed for decades, have well defined

techniques for designing Datawarehouse schema [8, 9], and a

variety of tools available for advanced data analytics. For a

very long time, Datawarehouses were the mainstream

solutions for storing and analyzing huge data volumes. The

top vendors such as Oracle, Teradata, and Exadata are still

enabling enterprises to store and analyze large amounts of

data.

The main idea with the Datawarehouse solution is that the

data required for analytics must be ingested into the internal

data format that is highly optimized for analytics. The

advantage of this approach is the performance. Internal and in

many cases proprietary format contains optimizations that are

not available in the open-source solutions. In the past, the

proprietary format gave the Datawarehouse performance

advantages compared to other analytic systems.

The main issues in the Datawarehouse solutions are the

facts that the underlying infrastructure must enable

Datawarehouse to store all required data, which puts a burden

on the administration teams, and the cost of the solution that

includes the resources that are always allocated to the

Datawarehouse system even if it is not used. The

Datawarehouse solutions were the first choice for most of the

analytic teams who need interactive analytics, but the total

cost of ownership (TCO) in many cases does not justify the

solution.

Amazon made a breakthrough in the Datawarehousing

technology with the release of Redshift [10] – a cloud-native

Datawarehouse service that provides full data warehousing

experience exposed as a cloud service. The customers got the

ability to provision the Datawarehouse service, load the data,

and define the compute needed to analyze the data. The

biggest advantage of cloud Datawarehouse is the resource

elasticity that solved the main drawback of the classical Data

warehousing solutions – the TCO. Unlike the on-premises

Datawarehouse that had pre-build resources, the cloud

Datawarehouse enabled organizations to scale up and down

the resources depending on the needs. The organizations

could load a large amount of data without worrying about the

underlying storage capacities, scale-up the compute power of

the Datawarehouse when needed, and scale it down to reduce

the cost when there is no need for processing the data. The

cloud Datawarehouse provided by Amazon fulfilled the main

requirements of the classical warehouses and added elasticity.

Other vendors followed this approach and now we have many

cloud data warehousing solutions such as Azure Synapse

Datawarehouse [11], Google BigQuery [12], Snowflake [13],

etc. All vendors are trying to combine all the benefits of the

classical Datawarehouse with the elasticity and scale of the

cloud.

The modern cloud Datawarehouses solve the problem of

elasticity and scale on-demand that cannot be easily solved in

the on-premises Datawarehouses. However, there is still one

downside – the data must be ingested from the external data

sources into the Datawarehouse internal data format, which

causes a lag between the latest data and the data available for

the analytics.

B. Lakehouse solutions

In cloud environments the data is stored in the Data lakes.

The Data lake is a logical storage space where the

organizations can store the exabytes of data, get the best

throughput for reading raw files, ensure redundancy that can

span across multiple geographical regions and data centers.

The Data lake seems like a perfect solution for storing data.

The only drawback of Data lake is that they do not provide the

ability to analyze the data in the lake.

The first successful attempt to provide analytic capabilities

over large storage was Hadoop – a distributed system that

enabled the analyst to analyze a large amount of data stored in

the distributed system called Hadoop file system (HDFS).

This setup enabled the analyst to analyze data, but the

performance of Hadoop is far from interactive. Apache Spark

[14] is one of the most popular platforms that enabled analysts

to do efficient analytics on the lake. Apache Spark became

mainstream in the data lake solutions. One of the most

common query engines used to implement the Lakehouse

pattern is Apache Spark. Apache Spark is an open-source

distributed query system licensed under Apache License 2.0.

Spark enables advanced data analytics, management, and

updates, and provides a rich and powerful set of APIs to

analyze data.

The main idea of Lakehouse architecture is the separation

of compute and storage. The compute is a query engine or

data processing engine that is detached from the storage, and

the data is placed in Data lake where it can be accessed by any

query. The compute engine fetches data from the remote Data

lake and return data to the analysts once the processing is

completed.

Many commercial vendors offered their own

implementation of Data Lakehouse services. Nowadays, we

have many Lakehouse-type solutions that are offered on

different clouds such by Databricks (proprietary version of

Apache Spark code implemented by the founders of Spark),

Azure Synapse, etc. The main characteristics of these

solutions is that they are always referencing the externally

stored data, and don’t require data to be ingested to start

analytics. This enables real-time insight into the latest version

of data without the need to wait for the daily data loads to

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 3 of 6 ISBN 978-86-7466-930-3

finish before starting the analytics.

One of the main concerns in the Lakehouse solution is

whether they would be able to match the performance of

Warehouse solutions. Traditionally, the proprietary format

used in Datawarehouse solutions was the main competitive

advantage compared to the original data formats stored in

Data lake. Databricks announced that they have set a new

world record in 100TB TPC-DS, the gold standard

performance benchmark for data warehousing [15]. The test

was performed in Barcelona supercomputing center and

officially submitted as TPC-DS result that outperformed the

previous record by 2.2x. This was the first Lakehouse-class

solution that set the record in an official Datawarehouse

benchmark and proved that the Lakehouse architectures can

compete with the modern Datawarehouse solutions. One of

the key reasons for this kind of success of Lakehouse solution

is that they are using the optimized storage file format that

matches the proprietary internal formats used in the

Datawarehouse solutions.

More insights into data lake solutions and current trends

can be found in the literature, including what steps are needed

to adopt the cloud concept in data analytic solutions [16].

V. DATA FORMAT

One of the most important design decisions that will impact

the efficiency of the data analytics is the choice of the file

format that will be used to store the data. Most of the data

used for analytic purposes is stored in a plain textual format

represented as a delimited text (for example comma separated

values – CSV, tab-separated values – TSV, etc.). The

documents containing tabular data are represented as Open

Office or Microsoft Office formats. Although these data

formats are very common, they are inefficient for big data

analytics.

There is an additional class of plain textual data represented

in JSON format. The JSON format is the standard format in

many Internet of Things (IoT) applications where the IoT

devices send the messages in JSON format, or the messages

that will be eventually stored in JSON format [17]. JSON

format provides flexibility for changing the structure of data

but complicates the analytics because it requires a parser that

is more complex than the plain delimited text parser.

In the practice, the data analysts could analyze data stored

in CSV, JSON and other commonly used formats. However,

since these formats are not optimized for analytics, it was very

hard for data analysts to extract valuable information with

performance that matches performance of database systems.

The proprietary data formats that are used to store data in

Datawarehouse solutions were the biggest competitive

advantage of the Datawarehouse systems compared to the

open-source solutions. The optimized formats with high

compression, columnar organization of data, and vectorized

processing was the main reason why the data analytics teams

used the Datawarehouse solutions.

In the open-source community multiple advanced formats

are proposed that are designed to optimize the storage format

and improve the performance of analytics. Examples are Row

Columnar (RC)[18] or Optimized Row Columnar (ORC)[19]

file format. The idea of these formats was to define binary

representation of data prepared for analytics and optimize

access for the analytical jobs. However, the open-source

format that took most of the market share became Parquet

format [19]. Parquet format is an open-source format that

introduces most of the benefits that exist in the proprietary

Datawarehouse formats, such as:

- Column organization – the data is physically separated

into column segments instead of rows. The column

segments contain all cell values from the same column.

The columnar organization enables the analytical

queries that read 2 columns out of 100 columns to read

only 2% of data on average. Since the analytical

queries aggregate the measures and summarize them

by few columns, the columnar organization introduces

most of the performance benefits for the analytical

queries.

- Row-groups – columns are divided into row–groups (for

example 100.000 rows represent a row group that will

be split into the columns) The column segments within

the row groups contain some statistical information

about cells such as min/max values.

- Compression – There are some compression techniques

such as run-length encodings (RLE) [20] that can be

applied on the Parquet files to achieve excellent 10-

100x compression, which matches the compression in

the proprietary Datawarehouse formats. The main

impact is not just storage savings. Compressed storage

decreases IO requests sent to the storage and improves

data throughput that analytical tools can use to fetch

the data.

- Non-relational types – Parquet is not limited to strongly

defined types and enables storing objects and arrays.

The organization of complex types in Parquet format is

described in [21].

The Parquet format became the mainstream in data

analytics. Although there are other formats that are used in

practice, the Parquet format is getting the highest market share

and we can expect that the majority of data will be stored in

the Parquet format. Therefore, any modern big analytical

solution must be based on the Parquet format, or some

enhancement based on Parquet. Even if the new file format

arrives in the future, there is a high chance that most data will

be stored in the Parquet format.

Although the Parquet format is designed to store analytical

data that should be read-only (or append-only), there is a need

to enable data engineers to make updates to the data. There

are several updateable formats (such as Delta Lake [22]), that

combine the excellent storage format for analytics and provide

ACID guarantees of the operations that managed data.

Another possible advancement includes parsing big data using

the dataflow paradigm [23] by transforming automatically the

parsing software [24] and using appropriate scheduling

techniques [25] for the dataflow supercomputing architecture.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 4 of 6 ISBN 978-86-7466-930-3

VI. CONCLUSION

Big data analytics solutions evolved from the original on-

premises based big Datawarehouse solutions to modern cloud

based Datawarehouse solutions. The original on-premises

Datawarehouse solutions enabled organizations to store large

amounts of data and analyze data with acceptable

performance. However, these kinds of solutions failed to

enable scalability and elasticity. Cloud computing can scale

resources on-demand. Data lake that can store Exabytes of

data with guaranteed replication, and advances in the

opensource file formats disrupted the Datawarehouse

solutions in big data analytics. Although Datawarehouse

solutions evolved and have been adapted for the modern cloud

environments, architectures with full separation of compute

power and storage, where the compute can scale when needed,

have a direct access to the latest version of data in the lake,

and the performance that match modern Datawarehouses. In

addition to matching all features that were historically

considered as the advantage of Datawarehouse, the Lakehouse

solves the issue that fundamentally cannot be solved with

Datawarehouse solutions – data ingestion. Lakehouse

solutions are able to access the original data in the Data lake

and don’t require an explicit process to load external data.

Without performance degradation compared to internal data

formats used in Datawarehouse solutions, direct access

simplifies data management process by avoiding the

additional processes that constantly move the data and also

enable analyst to get the data without any delay.

By looking at the modern trends, we can conclude that the

future of big data analytics will be based on the cloud

environments and Lakehouse architectures. The cloud Data

Lakehouse solutions leverage all benefits of the cloud and

match performance of the Datawarehouse solutions. The

cloud Data Lakehouse solutions can be considered as a

primary solution for most of the future research and as the

mainstream and preferred technology for development

projects.

ACKNOWLEDGMENT

DM and NK are partially supported by the School of

Electrical Engineering, University of Belgrade, Serbia and by

the Ministry of Education, Science, and Technological

Development of the Republic of Serbia. NK is partially

supported by the Institute of Physics Belgrade, contract no.

0801-1264/1.

REFERENCES

[1] P. Chauhan, M. Sood, “Big Data: Present and Future,” The IEEE
Computer Society, (2021), DOI: 10.1109/MC.2021.3057442.

[2] S. G. Manikandan, S. Ravi, "Big Data Analysis Using Apache Hadoop,"

International Conference on IT Convergence and Security (ICITCS), pp.
1-4, (2014). doi: 10.1109/ICITCS.2014.7021746.

[3] E. Zagan, M. Danubianu, "Cloud DATA LAKE: The new trend of data

storage," 3rd International Congress on Human-Computer Interaction,
Optimization and Robotic Applications, 1-4 (2021), doi:

10.1109/HORA52670.2021.9461293.

[4] I. Hashem, I. Yaqoob, N. Anuar, S. Mokhtar, A. Gani, A., and S. Khan,

“The rise of “big data” on cloud computing: Review and open research

issues”, Information Systems, Volume 47, 2015, Pages 98-115, ISSN

0306-4379.

[5] R. Han, L. Guo, M. M. Ghanem and Y. Guo, "Lightweight Resource
Scaling for Cloud Applications," 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, 644-651, (2012).

doi: 10.1109/CCGrid.2012.52.
[6] G. Garani, A. Chernov, I. Savvas and M. Butakova, "A Data Warehouse

Approach for Business Intelligence," 2019 IEEE 28th International

Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 70-75 (2019). doi: 10.1109/WETICE.2019.00022.

[7] D. Oreščanin and T. Hlupić, "Data Lakehouse - a Novel Step in

Analytics Architecture," 44th International Convention on Information,
Communication and Electronic Technology, 1242-1246 (2021). doi:

10.23919/MIPRO52101.2021.9597091.

[8] R. Kimball, M. Ross, “The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling,” 2nd. edition. John Wiley & Sons,

Inc., USA, (2002).

[9] W. Inmon, “Building the Data Warehouse,” John Wiley & Sons, Inc.,

USA, (1992).

[10] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V.

Srinivasan, “Amazon Redshift and the case for simpler data
warehouses,” SIGMOD (2015).

[11] J. Aguilar-Saborit, R. Ramakrishnan, K. Srinivasan, K. Bocksrocker, I.

Alagiannis, M. Sankara, M. Shafiei, J. Blakeley, G. Dasarathy, S. Dash,
L. Davidovic, M. Damjanic, S. Djunic, N. Djurkic, C. Feddersen, C.

Galindo-Legaria, A. Halverson, M. Kovacevic, N. Kicovic, G. Lukic, D.

Maksimovic, A. Manic, N. Markovic, B. Mihic, U. Milic, M. Milojevic,
T. Nayak, M. Potocnik, M. Radic, B. Radivojevic, S. Rangarajan, M.

Ruzic, M. Simic, M. Sosic, I. Stanko, M. Stikic, S. Stanojkov, V.

Stefanovic, M. Sukovic, A. Tomic, D. Tomic, S. Toscano, D.
Trifunovic, V. Vasic, T. Verona, A. Vujic, N. Vujic, M. Vukovic, M.

Zivanovic, “POLARIS: The distributed SQL engine in Azure Synapse”

PVLDB, vol. 13, issue 12, (2020).
[12] K. Sato, “An inside look at Google BigQuery,” Technical report,

Google. https://cloud.google.com/files/BigQueryTechnicalWP.pdf.

[13] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J.
Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee,

A. Motivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn, S.

Triantafyllis, P. Unterbrunner, “The Snowflake Elastic Data
Warehouse,” SIGMOD (2016).

[14] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X.

Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, M. Zaharia, “Spark SQL:
Relational data processing in Spark,” Armbrust, Melbourne, Victoria,

Australia, ACM, SIGMOD, (2015).

[15] R. Xin, M. Mokhtar, "Databricks Sets Official Data Warehousing
Performance Record," November, 2021, Databricks company blog.

[16] C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang,

”Leveraging the data lake: Current state and challenges,” International
Conference on Big Data Analytics and Knowledge Discovery, Springer,

Cham, 179-188, (2019, August).
[17] N. Nikolov, "Research of the Communication Protocols between the

IoT Embedded System and the Cloud Structure," 2018 IEEE XXVII

International Scientific Conference Electronics - ET, 1-4 (2018). doi:
10.1109/ET.2018.8549604.

[18] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “RCFile:

A fast and space-efficient data placement structure in MapReduce-based
warehouse systems,” Proceedings of the 2011 IEEE 27th International

Conference on Data Engineering, IEEE Computer Society, USA, 1199–

1208, (2011). DOI:https://doi.org/10.1109/ICDE.2011.5767933
[19] T. Ivanov, M. Pergolesi, “The impact of columnar file formats on SQL-

on-Hadoop engine performance: A study on ORC and Parquet.

Concurrency,” Computat Pract Exper. (2020),
https://doi.org/10.1002/cpe.5523.

[20] A. Ishtiaq, S. Ahmad, and D. S. Shukla, “Fast Retrieval with Column

Store using RLE Compression Algorithm,” International Journal of
Computer Applications, 111. 30-34, (2015). 10.5120/19537-1193.

[21] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M.

Tolton, and T. Vassilakis, “Dremel: Interactive Analysis of Web-Scale
Datasets”, Proc. of the 36th Int'l Conf on Very Large Data Bases, 330-

339 (2010).

[22] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres,
H. van Hovell, A. Ionescu, A. Łuszczak, M. Świtakowski, M.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 5 of 6 ISBN 978-86-7466-930-3

Szafrański, X. Li, T. Ueshin, M. Mokhtar, P. Boncz, A. Ghodsi, S.

Paranjpye, P. Senster, R. Xin, and M. Zaharia, “Delta lake: high-

performance ACID table storage over cloud object stores,” Proceedings

of the VLDB Endowment, vol. 13, issue 12, 3411–3424 (2020)

DOI:https://doi.org/10.14778/3415478.3415560.
[23] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-

based parallelization of control-flow algorithms,“ Advances in

computers, Elsevier, 104, 73-124 (2017).

[24] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L.

Petrovic, “Transforming applications from the control flow to the

dataflow paradigm,” Dataflow supercomputing essentials, Springer,

Cham, 107-129 (2017).

[25] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime job
scheduling algorithm for cluster architectures with dataflow

accelerators,” Advances in computers, Elsevier, 126 (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.3 - Page 6 of 6 ISBN 978-86-7466-930-3

Abstract— This work addresses high performance computing

architectures, presenting a hybrid processor that includes

multiple computing architectures on a single chip die.

Beside commonly used multicore processor, a personal

computer might include manycore graphical processor. This

work advocates for a combination of these two architectures

along with a dataflow processor that usually appears in the form

of a FPGA chip able to perform parallel tasks at the same time.

A quick overview of these computer architectures and

appropriate programming paradigms is followed by the

comparison based on flexibility and speed, price and

development time, and speed and power consumption. Finally,

the proposed hybrid processor is analyzed against

computationally demanding algorithms that are often executed

on high performance computing architectures.

Future work will include the comparison of the proposed

computer paradigms and the comparison of the proposed hybrid

architecture with existing ones.

Index Terms— High performance computing; manycore

processors; dataflow programming.

I. INTRODUCTION

Many high performance computing algorithms are scalable,

and as such, suitable for execution using:

- computer architectures the include graphical processing

units capable of executing algorithms,

- dataflow computer architectures.

Both of these exist in the form of:

- personal computers,

- computer clusters,

- cloud computers.

 Besides the differences in dataflow and conventional

computing architectures, their computing paradigms also

differ, as well as their suitability for executing high

performance computing algorithms.

 This work presents recently exploited computer

architectures from the point of view of their usability for

executing high performance computing algorithms. These

architectures are compared based on programming flexibility

that they offer, algorithm execution speed, scalability,

software development effort, constraints of each of

architecture type, price, and power consumption. The

presentation of the work is based on the proposed method for

presenting the results [1].

Danko Miladinović, Miroslav Bojović, and Nenad Korolija are with the
School of Electrical Engineering, University of Belgrade, 73 Bulevar kralja

Aleksandra, 11020 Belgrade, Serbia (e-mails: danko @ etf.bg.ac.rs, mbojovic

@ etf.bg.ac.rs, and nenadko @ etf.bg.ac.rs).
Vladisav Jelisavčić is with the Mathematical Institute of the Serbian

Academy of Sciences and Arts, Kneza Mihaila 36, Belgrade 11001 (e-mail:

vladisavj @ gmail.com).

 Following sections describe these computer architectures in

a uniform manner. A brief overview is followed by the

estimation of effectiveness. Each computing architecture is

subjected to the following criteria:

- order of number of transistors per number of instructions

that can run in parallel,

- speed of the hardware,

- suitability for high performance computing algorithms,

- independence from other computer architectures,

- price performance ratio,

- power consumption performance ratio,

- required space for computer architecture per performance

ratio.

On the top of the work, authors propose a hybrid processor

that includes multiple computing paradigms on a single chip.

II. MULTICORE ARCHITECTURES

Most of personal computer architectures are based on von

Neumann paradigm. Programs written in programming

languages are compiled and linked, and the resulting

instructions are stored on the disk. Once a program starts,

instructions are loaded into the RAM memory, from where

they get copied into the cache memory, so that they could be

read faster.

The processor is responsible for executing instructions.

Long ago, processors included a single arithmetical logical

unit (ALU) for performing arithmetical and logical operations.

The speed of processors was increasing for decades by

approximately doubling each second year. However, once the

speed reached around 3GHz, the trend stopped. The constraint

was and still is that the wave length became around 10 cm.

Given the fact that the clock cycle must be stable during the

whole instruction execution, and the signal has to travel with

the speed of light multiple times in different directions,

options for further acceleration were:

- to decrease the size of the chip,

- to decrease the size of transistors,

- to decrease the number of transistors per logical gates,

- to implement multiple ALUs that would work in parallel.

Decreasing the size of the chip die implies reducing the

number of transistors, leading to deteriorating performances.

Reducing the size of transistors would affect their functions

considerably (i.e. more failures would appear). Logical gates

are already optimized so that further reduction in the number

of transistors would affect their capacities for producing

output to multiple logical gates.

As a result, both research community and the industry

opted for multiplying ALUs on a single chip die.

Multicore architectures can execute an order of 10

Hybrid Manycore Dataflow Processor

Danko Miladinović, Miroslav Bojović, Vladisav Jelisavčić, and Nenad Korolija

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.4 - Page 1 of 5 ISBN 978-86-7466-930-3

operations simultaneously. The transistor count is around 1

billion. Clock cycle is order of GHz. As such, their usability

for high performance computer algorithms is limited in terms

of utilizing algorithms in the real time applications. One of the

most important characteristics of multicore architectures is

their independence from other computer architectures. As a

result, personal computers usually contain only one processor

of this type. Typical power consumption is around 500 watts.

When used in computer clusters, a single node could include

multiple processors of this type.

III. MANYCORE ARCHITECTURES

Graphical processing units are often referred to as

manycore computer architectures, as the number of processing

units is larger than those of multicore processors.

So-called manycore architectures are logical successor of

multicore processors. Certain fields, like computer graphics,

require more instructions per second than multicore

architectures produce, so that the picture can be refreshed

many times per second (e.g. 60 times). With shading effects

and full-hd or even 4k resolutions this implies updating

millions of pixel colors based on performed operations with

appropriate matrices. As a result, companies started producing

chips for graphical cards that include thousands of cores that

have lower number of available instructions supported by

their architectures but are capable of executing more

instructions per second. Soon after, utilization of the

processing power of new graphical cards started. Many

algorithms are implemented using the CUDA programming

model.

Manycore architectures have an order of 10 billion

transistors with an order of 1000 processor cores, and an order

of 1000 instructions that can run in parallel. The clock cycle

has an order of 1 GHz. This makes it suitable for high

performance computing algorithms. Although each core is

based on von Neumann paradigm, being capable of executing

any instruction defined by the architecture at any given

moment, it relies on the multicore processor as the one that

assigns jobs to cores. The manycore architectures proved to be

efficient for high performance computing algorithms,

including data mining and coin mining. Power consumption is

of the same order of magnitude as of multicore processors,

while manycore processor offer superior performance. They

usually come in the form of a PCIe card that attaches to the

mainboard.

IV. DATAFLOW ARCHITECTURES

Dataflow architectures are based on a separate

programming paradigm called dataflow paradigm. Data flows

through a hardware in terms of electrical signals, resulting in

transforming an input to the output [2, 3]. One of the main

advantages over the previously mentioned computer

architectures is that there is no need for an order of 1 billion

transistors to execute only around 10 instructions in parallel.

Dataflow hardware can execute even 1000 instructions

simultaneously. As such, it is capable of accelerating many

algorithms [4, 5]. The main disadvantage is that the multicore

processor is needed for preparing the data to be processed

using a dataflow hardware and for handling results.

The order of number of transistors is comparable to

previously mentioned computer architectures, while the

number of instructions that can run in parallel can be much

higher. The speed of the hardware is around 0.1 GHz. Since

they do not support executing any instruction defined by the

architecture at any given moment, they are suitable for only a

portion of high performance computing algorithms and more

programming effort is needed for creating programs [6]. A

mitigating circumstance is that there is a way to automatically

translate certain algorithms from the control-flow into the

dataflow paradigm [7]. Having significantly lower space

occupation and power consumption per instruction, dataflow

hardware has good price performance ratio.

V. HYBRID ARCHITECTURES

While each of the available computer architectures has its

own advantages and disadvantages, it is a logical step but also

a challenge to try to merge multiple programming paradigms

into a single computer architecture. The task is even harder to

achieve if they are to be put on the same chip die. However,

the need for computing justifies the effort needed to merge

existing computing paradigms.

Fig. 1. Hybrid control-flow dataflow architecture.

Fig. 1 depicts a hybrid control-flow dataflow architecture

on a single chip. Compared to the typical multicore processor

architecture, the proposed hybrid architecture includes

graphics processing unit (GPU) cores and dataflow kernels

beside central processing unit (CPU) cores and cache

memories. Additionally, network on chip (NoC) is suggested

as a good way of handling the communication between GPU

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.4 - Page 2 of 5 ISBN 978-86-7466-930-3

cores. Compared to the Maxeler dataflow hardware PCIe

cards, proposed dataflow engine (DFE) kernels are connected

directly to the slowest internal cache memory, because of the

necessity for dataflow hardware to execute at the same speed.

Constraint that has to be taken into account is that cache

locking mechanism has to be implemented for cache memory

connected to the dataflow, which would enable granted access

to DFE kernels, but also to GPU if it is required by the

application that is executed using both computing paradigms.

This architecture offers the best that any of the paradigms

offer. On the other side, the complexity is equal to the sum of

complexities of incorporated architectures. As such, the

proposed hybrid architecture is suitable for executing multiple

jobs simultaneously, where some of them are suitable for

executing using the dataflow paradigm, while others achieve

better performance when executed using manycore

architecture. Finally, there are software applications that are

not based on scalable algorithms, making them suitable solely

for the multicore processor.

The emerging problem on heterogeneous computer

architectures that include both dataflow and control-flow

hardware is scheduling program execution. Authors have

presented their novel algorithm for optimal scheduling of both

dataflow and control-flow jobs [8]. The algorithm is general

but is limited in number of jobs it can schedule due to the

computational complexity. Based on this optimal algorithm,

two heuristic algorithms for optimizing the throughput and

minimizing total execution time are derived, producing near-

optimal schedules for both dataflow and control-flow jobs at

large job counts at the cost of negligible scheduling penalty.

The heuristic algorithms performance gain decreases slightly

as job count increases and only at the beginning, proving that

the performance of existing cluster structures with appropriate

dataflow accelerators can be considerably improved.

The drawback of combining multiple computing

architectures on a single chip is that it increases the

probability of failure. However, the probability is relatively

high at the very beginning, and once a chip enters the so-

called wear-out phase, and is relatively low in the meanwhile

[9].

The order of number of transistors per number of

instructions that can run in parallel depends on the type of job.

If a job is suitable for dataflow architectures, the acceleration

would be similar to those of dataflow architectures, while the

number of transistors would be around three times higher,

assuming that included architectures consume the same

number of transistors. The same applies for jobs suitable for

manycore architectures, and jobs that cannot be efficiently

accelerated using neither manycore architecture, nor a

dataflow architecture. However, this applies solely to

scheduling a single job that can be executed using one of

these three types of architectures. If we combine multiple

jobs, those suitable for dataflow architectures would be

executed there, based on their hardware requirements and on

acceleration they achieve using the dataflow architecture. Jobs

suitable for manycore architectures could run in parallel,

while jobs that are based on algorithms that are not scalable

could run in parallel on the multicore processor. Therefore,

achieving fair comparison of the number of instructions that

can be run on the proposed architecture is not a

straightforward task. As a result, new benchmarks are needed

to compare the proposed architecture to the existing ones. For

now, one could consider the worst-case scenario, where the

acceleration of a job is the same as for the best suited

architecture for the job, and the number of transistors is equal

to the sum of the number of transistors included on each part

of the proposed hybrid processor [10].

The speed of the proposed hardware is also hard to define.

As the processor includes different architectures that naturally

run on different clock rates, the proposed processor would

have a clock speed for the multicore processor that is a

multiple of the clock speed of a dataflow architecture and

manycore architecture. Therefore, the multicore would be able

to efficiently communicate with other parts of the processor

using input and output communication buffers.

The proposed computer architecture is not only suitable for

high performance computing algorithms, but it is more

efficient that aforementioned architectures, as it offers the

most suitable hardware type for any particular job. The

proposed processor includes multicore processor on the same

chip die, making the architecture independent from other

computer architectures. The price performance ratio for any

given job is lower than those of the best suited of the

aforementioned architectures. However, given a set of jobs,

where each is suited for one particular architectures, the

proposed architecture exploits advantages of all three types of

architectures and could achieve the best speed-up in all

categories of jobs. The price performance ratio is also lower

for a particular job suited for a single computer architecture

but is better than any of the aforementioned architectures if

there are jobs that could approximately equally occupy all

resources of the proposed processor. If completely utilized,

the power consumption performance ratio is better than any of

the three underlying architectures. For a single job, it is

around three times lower, as it is estimated that this processor

would consume as much electrical power as all three

underlying architectures combined. The space required for the

proposed computer architecture is one of its main advantages.

Having in mind that it would be able to execute any type of

jobs that any of the three computer architectures can, the

space per performance ratio cannot be outperformed by any of

the existing architectures.

This is not the unique case of proposing combination of

manycore and dataflow architectures. Similar tries have been

by researchers in the past [11, 12, 13].

VI. COMPARISON

This section summarizes the advantages and disadvantages

of described computer architectures and compares them based

on various criteria. For each of the given criteria, the proposed

hybrid computer architecture is compared to all three

underlying computer architectures.

The research [2] summarizes in their Table 2 the achieved

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.4 - Page 3 of 5 ISBN 978-86-7466-930-3

speedups of algorithms implemented using the same type of

the dataflow hardware that includes a memory on a chip

comparing to the control-flow implementations of the same

algorithms. The Lattice-Boltzmann algorithm is presented in

detail, along with the dataflow code. Authors have compared

execution time of Lattice-Boltzmann algorithms using the

MAX2 card with 6GB of RAM and using Intel i5 650

processor with the clock speed of 3.2GHz. The computer used

4GB RAM memory at the speed of 1333MHz. The conclusion

that can be drawn is that the speed-up of all observed dataflow

algorithms ranges from 25% up to the multiplication factor of

150. Based on the comparison of these algorithm

implementations for control-flow and for dataflow paradigms,

we can summarize the advantages and disadvantages of both

programming paradigms.

Table I presents a comparison of computing architectures in

terms of flexibility to execute any instruction at any given

moment and the speed of execution measured in number of

instructions per second. As it can be seen, the multicore

computing paradigm offers the highest flexibility by being

able to execute any type of job, as it can execute any

instruction defined by the architecture at any given moment.

Although manycore architectures work on the same principle,

they are considered to be utilized if many processing units

may work in parallel. Therefore, their flexibility is limited to

scalable algorithms suitable for manycore architectures.

Dataflow architectures introduce new constraints by not being

able to adapt to new needs before re-configuring the

hardware. Hybrid architectures offer the advantages of both

paradigms.

The speed of execution measured in number of instructions

is lowest for the multicore architectures, as they are limited to

processing up to an order of 10 instructions simultaneously.

Any other of presented computer architectures can execute

two or three orders of magnitude more instructions

simultaneously.

TABLE I

FLEXIBILITY AND SPEED COMPARISON OF VARIOUS COMPUTING

ARCHITECTURES

Type of

 architecture

Flexibility Speed

Multi core +++ +

Many core ++ ++

Dataflow + ++

Hybrid +++ ++

Table II presents a comparison of computing architectures

in terms of price and the development time measured by effort

needed for producing the software. The price raises as we lean

towards more optimized computer architectures. The same

applies to software development time. The only exception is

that hybrid computer architecture, which is suitable for

executing any of the given type of software, which means that

the development time depends on the type of software being

executed on the architecture.

As dataflow architectures are not as utilized as multicore

and manycore computer architectures, the price tag of

dataflow architectures is higher that it would be if each

personal computer would include dataflow engines as well.

TABLE II

PRICE-DEVELOPMENT TIME COMPARISON OF COMPUTING ARCHITECTURES

Type of

 architecture

Price Development

time

Multi core + +

Many core ++ ++

Dataflow +++ +++

Hybrid ++++ + - +++

Table III shows a speed to power consumption comparison

of these computing architectures. The speed of the multicore

computer architecture is slower than others, as it can run a

smaller number of instructions in parallel.

When it comes to power consumption, it is similar for all

types of architectures, which leads us to the following

conclusion. The power consumed per a single instruction is

the highest in the case of the multicore computer architecture,

while it is the lowest for dataflow and hybrid computer

architectures, assuming that they are not underutilized.

TABLE III

SPEED-POWER CONSUMPTION COMPARISON OF COMPUTING ARCHITECTURES

Type of

 architecture

Speed Power

consumption

Multi core + ++

Many core ++ ++

Dataflow +++ ++

Hybrid +++ ++

Based on these comparisons, we could conclude that the

proposed architecture has the potential for achieving better

results in terms of speed, flexibility, and power consumption

comparing to the existing computer architectures, while the

programming effort might be higher in the case of the

algorithms implemented using the dataflow paradigm.

Comparing to the research available in the open literature,

the proposed architecture is more high performance

computing oriented than the Ultimate dataflow processor [12],

while it doesn't support internet of things. Authors of

SambaNova [14] also recognized the potentials of dataflow

computing paradigm. Their Reconfigurable Dataflow Unit

(RDU) enables accelerating algorithms with the flexibility to

build custom dataflow pipelines as well as large memory

capacity to run big models such as Natural Language

Processing (NLP) and high-resolution computer vision

efficiently. However, it is dedicated to algorithms that consist

predominantly of the source code that can be most efficiently

accelerated using the dataflow paradigm.

Research [15] exploits the opportunities from digital

Processing-in-memory (PIM) bit-serial processing and in-

memory customization, to tackle the above challenges by co-

designing sparse algorithm, multiplication dataflow, and PIM

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.4 - Page 4 of 5 ISBN 978-86-7466-930-3

architecture.

VII. CONCLUSION

Along with a multicore processor, a personal computer

might include manycore graphical processor and a dataflow

processor on the same chip die. This work advocates for a

combination of these two architectures in order to create the

type of the computer architecture that is able to execute jobs

suitable for any of these three types of architectures in

parallel.

Presented comparison between computing architectures

suggests what kind of algorithms are suitable for execution

using existing computing paradigms.

The proposed hybrid processor is analyzed against

computationally demanding algorithms that are often executed

on high performance computing architectures. As it includes

multiple computing architectures on a single chip die, it could

achieve the best acceleration for a job suitable for any of

aforementioned computer architectures. At the same time, if

the amount of jobs suitable for these three computer

architectures matches the amount of resources of the proposed

processor, the proposed processor with appropriate job

scheduling can achieve the performance of combined

architectures.

Future work includes the simulation comparison of the

paradigms and the comparison of the proposed hybrid

architecture with existing ones.

ACKNOWLEDGMENT

DM, NK, and MB are partially supported by the School of

Electrical Engineering, University of Belgrade, Serbia. VJ is

partially supported by the Mathematical Institute of the

Serbian Academy of Sciences and Arts. NK is partially

supported by the Institute of Physics Belgrade, contract no.

0801-1264/1. All authors are partially supported by the

Ministry of Education, Science, and Technological

Development of the Republic of Serbia.

REFERENCES

[1] V. Milutinovic, "The best method for presentation of research results,"
IEEE TCCA Newsletter, 1-6 (1996).

[2] N. Korolija, J. Popović, M. Cvetanović, and M. Bojović, “Dataflow-

based parallelization of control-flow algorithms,“ Advances in

computers, Elsevier, 104, 73-124 (2017).

[3] N. Trifunovic, V. Milutinovic, J. Salom, A. Kos, “Paradigm shift in big

data super-computing: dataflow vs. controlflow,” J. Big Data, vol. 2,
issue 4, 1–9 (2015).

[4] N. Trifunovic, V. Milutinovic, N. Korolija, G. Gaydadjiev, "An

AppGallery for dataflow computing," Journal of Big Data, vol. 3, issue
1, 1-30 (2016).

[5] N. Korolija, T. Djukic, V. Milutinovic, and N. Filipovic, “Accelerating

Lattice-Boltzman method using Maxeler dataflow approach,” The IPSI
BgD Transactions on Internet Research, 34 (2013).

[6] J. Popovic, D. Bojic, and N. Korolija, “Analysis of task effort estimation

accuracy based on use case point size,” IET Software, 9(6), 166-173
(2015).

[7] V. Milutinovic, J. Salom, D. Veljovic, N. Korolija, D. Markovic, and L.

Petrovic, “Transforming applications from the control flow to the
dataflow paradigm,” Dataflow supercomputing essentials, Springer,

Cham, 107-129 (2017).

[8] N. Korolija, D. Bojić, A. R. Hurson, and V. Milutinovic, “A runtime job

scheduling algorithm for cluster architectures with dataflow

accelerators,” Advances in computers, Elsevier, 126 (2022).

[9] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris, “Recycled

IC detection based on statistical methods,” IEEE transactions on
computer-aided design of integrated circuits and systems, 34(6), 947-

960 (2015).

[10] V. Milutinović, N. Trifunović, N. Korolija, J. Popović, and D. Bojić,
“Accelerating program execution using hybrid control flow and

dataflow architectures,” 25th Telecommunication Forum, IEEE, 1-4

(2017).
[11] V. Milutinović, E. S. Azer, K. Yoshimoto, G. Klimeck, M. Djordjevic,

M. Kotlar, M. Bojovic, B. Miladinovic, N. Korolija, S. Stankovic, N.

Filipović, Z. Babovic, M. Kosanic, A. Tsuda, M. Valero, M. de Santo,
E. Neuhold, J. Skorucak, L. Dipietro, I. Ratkovic, "The ultimate

dataflow for ultimate supercomputers-on-a-chip, for scientific

computing, geo physics, complex mathematics, and information
processing," 10th Mediterranean Conference on Embedded Computing,

IEEE, 1-6 (2021, June).

[12] V. Milutinović, M. Kotlar, I. Ratković, N. Korolija, M. Djordjevic, K.

Yoshimoto, and M. Valero, "The Ultimate Data Flow for Ultimate

Super Computers-on-a-Chip, " Handbook of Research on

Methodologies and Applications of Supercomputing, IGI Global, 312-
318 (2021).

[13] V. Milutinović, B. Furht, Z. Obradović, and N. Korolija, “Advances in

high performance computing and related issues,” Mathematical
problems in engineering, (2016).

[14] R. Prabhakar, S. Jairath, and J. L. Shin, “SambaNova SN10 RDU: A

7nm Dataflow Architecture to Accelerate Software 2.0,” 2022 IEEE
International Solid-State Circuits Conference (ISSCC), IEEE, vol. 65,

350-352 (2022).

[15] F. Tu, Y. Wang, L. Liang, Y. Ding, L. Liu, S. Wei,... and Y. Xie, “SDP:
Co-Designing Algorithm, Dataflow, and Architecture for in-SRAM

Sparse NN Acceleration,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, (2022).

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.4 - Page 5 of 5 ISBN 978-86-7466-930-3

Abstract—As the complexity of automotive systems has grown,

it has become necessary to cluster various vehicle components

into several domains, based on a specific function they perform.

This approach has facilitated the development of domain-specific

features, as it allows to create communication standards and

common libraries that meet the requirements of the particular

domain. On the other hand, it has created the redundancy in the

resource consumption required to perform similar tasks in

different domains, which leaves the room for further

optimizations. This is most notable if we analyze the

functionalities of the two fastest growing domains: autonomous

driving assistance (ADAS) and in-vehicle infotainment (IVI),

which are both developing simultaneously, and may benefit from

the option of providing features and services to each other. This

paper will examine and propose a solution for interconnection

between ADAS and IVI domains by utilizing state-of-the-art

mechanisms of the service-oriented architecture (SOA)

paradigm. The examination of SOA utilization rationale will be

presented, as well as the crucial challenges and limitations of the

possible approaches, derived mainly from the discrepancy of

service-oriented architecture implementation and mapping in

different standards. Various features and use-cases will be

discussed, that would be good candidates for cross-domain

implementation.

Index Terms— in-vehicle domains, ADAS, IVI,

interconnection, SOA in automotive.

I. INTRODUCTION

The transition to centralized domains in the automotive

system design and development was necessary due to the

increasing number of Electronic Control Units (ECUs) in the

modern vehicle. With this approach, the system is organized

into several domains based on the features and the tasks ECUs

within the domain perform. By splitting the whole system into

a set of specialized domains, it was possible to create

standards and abstractions that facilitate the development of

features specific to the particular domain, without the need for

developers to constantly solve the problems of connectivity

and resource sharing. Two domains which are constantly

improved and require powerful resources are ADAS -

Advanced Driver System Assistant domain and IVI - In-

vehicle Infotainment domain. The ADAS domain is

responsible for safety-critical features and algorithms using

Dušan Kenjić is currently working toward the Ph.D. degree with the

University of Novi Sad, Serbia, (e-mail: dusan.kenjic@uns.ac.rs).
Marija Antić is currently the Assistant Professor with the University of

Novi Sad, Serbia, (e-mail: marija.antic@rt-rk.uns.ac).

Dušan Živkoc is with the RT-RK Institute for Computer based Systems,
(e-mail: dusan.zivkov@rrt-rk.com).

various types of sensors in order to enable safe, comfortable

and cost-effective driving. On the other hand, the IVI domain

is oriented towards passenger entertainment, as well as

towards providing useful information about the driving

conditions and the state of the vehicle. Although these two

domains perform different tasks, there is a set of features and

sensors of the same type which are commonly used in both of

them. However, in the current architecture of modern vehicle,

these two domains do not share any of the hardware resources

nor results of the data processing algorithms. This creates an

implementation overhead, as similar functionalities need to be

implemented in both of the domains, and the hardware cost is

constantly increasing. This represents the main motivation to

design an approach for resource sharing between domains as a

first step towards the unified platform which shall control the

entire system.

In this paper, we will present the results of the initial phase

of a research project aiming to create the solution for the inter-

domain communication and resource sharing in the

automotive solutions. First, we will present the summary of

the state-of-the-art research and commercially used

approaches for the inter-process communication and service-

oriented architecture in automotive industry. Then, we will

propose the architecture of the solution connecting ADAS and

IVI domains, provide some practical details and discuss the

examples of the use-cases which would benefit from the

resource sharing between these two domains. Finally, we will

discuss the implementation challenges of the proposed

approach.

II. IPC AND SOA IN AUTOMOTIVE SYSTEMS

A. Service-Oriented Middleware in Automotive

Traditionally, automotive systems use a conventional

signal-based communication approach, which provides a

deterministic data transfer, and enables the processes to run in

the predefined schedule [1][2]. However, such an approach

does not support the desired scalability of the system, which is

required to satisfy the requirements of emerging applications

and scenarios. Therefore, in order to provide the flexibility

and a more dynamic and scalable system, service-oriented

architecture (SOA) was introduced to the automotive system

design. Service-oriented communication approach has been

adopted from the domains of web applications, cloud and

information systems, where it has already proven its

flexibility for functional services implementation [3]. SOA

represents an efficient way to encapsulate the job done by the

specific component into a service. This way, resources can be

Service-Oriented Communication Between

ADAS and IVI Domains in Automotive

Solutions

Dušan Kenjić and Marija Antić, Members, IEEE, Dušan Živkov

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 1 of 7 ISBN 978-86-7466-930-3

distributed to the clients interested in the information which

the service provides, the service implementation can remain

obscured from the clients and modularity and repetitiveness

can be achieved. Additionally, the unified communication

mechanism facilitates the interoperability between

heterogenous system components, which otherwise represents

a time consuming and challenging problem that needs to be

solved during the application development.

The first step towards the integration of SOA principles

within an automotive system is to create a platform and define

a protocol which can support this integration. Such platform

must be compatible with other automotive solutions and

protocol must be suitable with the automotive requirements

[4]. Scalable service-Oriented Middleware over IP

(SOME/IP) is a Remote Procedure Call (RPC) mechanism [5]

specialized for the usage in the automotive systems. It

consists of three modules: SOME/IP, SOME/IP Service

Discovery (SD) and SOME/IP Transformer. SOME/IP

fundamental module is managing the serialization and

deserialization of transmitting data, SD module enables the

connection establishment and service discovery procedure and

the Transformer module specifies automotive/embedded data

serialization [4].

There are multiple protocols which can be used for in-

vehicle cross-domain communication such as DDS, HTTP,

MQTT, web sockets, etc. Besides the abovementioned fact

that the SOME/IP is created for the automotive industry there

are several functional benefits that made it our choice for such

use-case. First, the mandatory configuration of the

communication over SOME/IP enables somewhat more

deterministic behavior in contrary to another protocols and

mechanisms used to implement SOA in the web and cloud

computing such as the HTTP for example. Additional benefit

is that SOME/IP provides multiple types of communication.

Comparing to the HTTP, which allows only request-response

communication initiated from clients, SOME/IP provides both

request-response and publish-subscribe approaches.

Furthermore, SOME/IP does not require communication

establishment for each data exchange, but only for initial

client-service connection and it can rely on both, TCP and

UDP protocols in contrary to the communication

implementing Representational State Transfer (REST)

principles.

Although having different architectures, diverse software

platforms use the SOME/IP communication stack based on

the similar concept as depicted in Fig. 1.

Fig. 1. Concept of SOME/IP implementation in automotive platforms

Usually, the middleware which provides the applications

with the particular interfaces based on the determined

configuration parameters is implemented by the standard.

Depending on whether it is event, method or field that is

defined by the configuration the data exchange would be

performed by publishing the information to subscribed client

when a logic on the service side determines so, client

requesting the execution of a method on service side and

getting the response if needed and getting, setting or notifying

about the changed state of a field, i.e. attribute on the service

side respectively.

Services in automotive SOA need to meet strict

requirements regarding the service discovery and startup

latency time [6]. Authors in [3] even propose dividing and

isolating secured and exposed subnetworks in order to

accomplish more reliability, since the service discovery

mechanisms cannot guarantee that the service will be

provided at the needed time. However, this aspect will not be

examined in this paper, but another one instead – how SOA is

implemented within available architectures and how it can be

used for inter-communication between ADAS and IVI

domains.

B. IPC Standards in IVI Domain

Modern vehicles are currently competing to meet the

requirements driven by the consumer technology, especially in

the infotainment domain. Inside the vehicle, the passengers

expect the experience they have when using everyday portable

devices, such as tablets and mobile phones. They are used to

being able to install and use various types of applications

developed by different vendors. In order to meet these

requests, it is necessary to utilize the globally accepted

standards for building scalable and portable platforms.

1) GENIVI approach

The former GENIVI (currently COVESA) alliance drives

the development of open standards and technologies used in

automotive systems. Their goal is to address the challenges

which the in-vehicle infotainment components are facing when

reaching to the outside world (cloud services, other vehicles,

etc.) and communicating with other in-vehicle infotainment

components as well. They offer the CommonAPI [8] – an

inter-process communication middleware based on the

FRANCA framework, which provides service-oriented

mechanisms. It is designed to split the applications

implementation apart from the communication mechanisms

used between the implemented application components.

Since the only purpose of this middleware is to provide

interfaces between lower (platform services and protocols) and

upper (applications) layers, its implementation is generated

mainly from the FRANCA Interface Definition Language

(FIDL) to make its utilization easier. Applying the specified

interface definition language – FIDL, it enables flexible

deployment models. This way, the dynamic behavior of an API

is specified by defining client/server interaction interfaces,

states and transitions between them [7]. The communication

itself is performed by using the generated Stub and Proxy

classes relying on the CommonAPI middleware within the

Service and Client applications respectively. This way, the

concept from Fig. 1 is kept since the entire CommonAPI stack

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 2 of 7 ISBN 978-86-7466-930-3

including the Stub and Proxy provides applications with

interfaces for usage of the SOME/IP mechanisms.

Additionally, COVESA semantically differentiates

between the two realms: Common-API Core, which does not

depend on the communication protocol itself, and

CommonAPI Binding which is protocol-specific [8].

Currently, the CommonAPI support two RPCs, D-Bus and the

SOME/IP. In order to set deployment parameters for chosen

protocol, the FRANCA Deployment (FDEPL) files are used

along with the FIDL.

2) Android approach

Android is an open-source operating system mainly utilized

for mobile devices. It enables deployment on wide range of

hardware platforms and supports third-party applications

development [9]. Currently, the automotive industry is facing a

similar requirement for the possibility for third-party

application development and utilization, therefore the

automotive community is more interested in the Android

platform [10].

Android platform has the mechanisms for feasible handling

of the Inter-Process Communication (IPC) via its proprietary

interface definition language called AIDL. It provides a

programming interface utilized by both the client and the

service using the IPC to communicate with each other [11].

Although AIDL has similar functionality as other IDLs, its

utilization does not rely on the same paradigm as it is the case

with the FIDL and COVESA’s Common-API service-client

communication model. Additionally, the SOME/IP had not

been supported in Android until vsomeip version 3 was

released. The possible correlation between CommonAPI and

Android and more details about the AIDL paradigm and its

communication mapping to other mechanisms will be

addressed in the Section 4.

C. IPC standards in ADAS domain

The previously described standards are used for the

implementation of the application for the in-vehicle

infotainment part of the automotive system. On the other hand,

ADAS domain is faced with the challenges driven by different

requirements, as it considers safety-critical algorithms and

modules. Nevertheless, ADAS domain implies the integration

of functionalities provided by machine vision and sensor

fusion. Lots of these algorithms are used in consumer

technologies, i.e., in the IVI domain also. Therefore, the

benefit of exchanging resources between two mentioned

domains is obvious, since there is a set of functionalities they

share. A standard that has become a convention for the

implementation of ADAS domain functionalities is

AUTOSAR.

The AUTOSAR standard considers both safety host and

performance host implementations. Safety hosts are referring

to ECU’s cores with safety and security control features

specialized for the automotive industry. Classic AUTOSAR

platform is designed for the fully deterministic, deeply

embedded standardization of safety hosts. Furthermore, the

Adaptive AUTOSAR platform is offering more flexibility by

addressing operability and communication mechanisms more

suitable for high-performance computing devices called

performance hosts. Since the performance host resources and

algorithms complexity are more similar to the ones in the IVI

domain, we will focus on the sharing resources and features of

the Adaptive AUTOSAR platform.

User applications are running on the top level, right on top

the AUTOSAR Runtime Environment for Adaptive

Applications (ARA). The main component of ARA is

ara::com, a middleware controlling the communication within

a system. It provides the interfaces to the user applications

which allow data exchange with both local and remote

applications and ARA services [12].

Equivalent to the FIDL, ara::com interfaces in ARA-API

are defined by the ARXML. Interfaces are provided to

applications with the exact same purpose as it is the case with

CommonAPI, to decouple the applications development from

the communication mechanism. It is done by utilizing two

artifacts - Skeleton and Proxy which implement the SOA

paradigm, i.e., the service-client communication, likewise it is

the case with the Stub and Proxy in CommonAPI. Skeleton

represents the generated instance which provides service calls

functionalities. On the other hand, Proxy is a generated

instance which provides the client calls functionalities.

III. CURRENT CROSS-DOMAIN RESOURCE SHARING SOLUTIONS

Most of the research in the field of interconnecting different

automotive domains focuses on the modelling and

implementation of multi-ECU system using a single standard.

Since meeting the safety and latency requirements for ADAS

is critical, it dictates the approach to use Adaptive AUTOSAR

for both the ADAS and IVI realm. This way, for the sake of

connectivity between different domains, neither the

CommonAPI nor Android are used, although they are a better

fit for IVI domain, since the development is forced to a single

standard approach which must fit ADAS requirements. The

authors then try to deal with the shortcomings that the

AUTOSAR standard provides in terms of UI as an important

aspect of in-vehicle infotainment [13]. Authors in [14]

presented challenges of modelling ADAS components for

camera resource sharing. However, it is needed to perform

further research on the most suitable communication channel

for the transmission of sensing data and data streams along

with the research on the most suitable communication

mechanisms by considering the entire, end-to-end

communication context for such resources sharing between

domains in automotive, the SOME/IP is not the most effective

solution for such use-cases. Furthermore, taking into

consideration the variety of operating systems on the other

side, such implementation cannot be taken “as is”.

COVESA alliance recognized this challenge and tried to

attain the adaptation between Adaptive AUTOSAR and the

CommonAPI by creating FARACON generator [15]. This

generator is used to translate the interface definition files from

one standard to another. This can be considered as a first step

towards the mapping of the features between standards.

However, it does not solve the cross-domain heterogeneity

issue, which is somewhat more complex.

There are not many papers that provide the actual

proposition for interconnection between ADAS and IVI

domains utilizing different standards. i.e., following

AUTOSAR on ADAS and CommonAPI or Android on IVI

side. The existing solutions have recognized the need for such

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 3 of 7 ISBN 978-86-7466-930-3

binding, but are also typically reduced to simple utilization of

socket-based communication with no actual research

background on the available protocols and state-of-the-art

SOA principles [16]. Additionally, the inter-process

communication paradigms diversity when considering the

various platforms standards is not actually covered even in

papers which provide the extensive solution for heterogenous

in-vehicle environments [17]. Hence, there is no

comprehensive project dealing with all aspects of this topic.

Since this topic is substantive and our project is still in the

development, some of the challenges will not be covered by

this paper but will be addressed in future work instead.

IV. PROPOSED SOLUTION

In this section, we will discuss the possible approaches that

allow remote procedure calls and exchange of data between

ADAS and IVI domains of the vehicle. Our goal is to provide

the connectivity, without compromising the functionality of

the IVI domain offered by the CommonAPI or Android, or the

safety features provided by the AUTOSAR in ADAS domain.

We will design our solution using the service-oriented

architecture principles, which fit perfectly into the scenarios

we want to support. Our focus is on allowing IVI domain

applications to use raw measurement data from ADAS

sensors, as well as the results of some of the algorithms that

run on the ADAS side. The opposite direction of integration is

not possible, due to potential safety issues.

There are several examples of use-cases where the

proposed cross-domain inter-connection can be beneficial. For

example, inputs from cabin camera which is commonly used

for driver monitoring on ADAS side can be shared for video

calls and other applications using camera in IVI domain. This

way, the cost of providing redundant hardware components

would be avoided. On the other hand, data from sensors

monitoring tire pressure, engine temperature and other crucial

components of the vehicle could be easily transferred and

handled by the applications in the IVI domain. These

applications could then not only inform the driver, but also

provide the better user experience by searching for the

recommendations and manuals on the Internet, or help by

finding the route to the nearest mechanic service. The results

of the data processing algorithms such as traffic sign detection

and recognition or driver drowsiness monitoring could also be

used by the IVI domain applications, to propose rest stops,

provide tourist information, etc.

To connect the components of the two domains in the

proposed solution, Ethernet-based communication will be

used. Recently, Ethernet has taken on the role of the vehicle

communication backbone because of its bandwidth,

scalability, flexibility and prevalence. In all of the

aforementioned terms, Ethernet is generally superior to other

in-vehicle buses, which are designed and optimized to fit only

specific use-cases. For example, CAN provides the reliability

which Ethernet cannot achieve because of the different

transmission media access strategies. On the other hand, CAN

is the automotive specific technology which means that

Android, as a standard that was not created solely for the

automotive industry, does not support CAN bus module

natively. Similarly, other in-vehicle buses are created to meet

Fig. 2. Centralized interconnection approach with POSIX OS on IVI side

Fig. 3. Distributed interconnection approach with POSIX OS on IVI side

the requirements of automotive signal-based communication,

where priority is the price and the determinism of the

communication mechanism, not the bandwidth itself. On the

other hand, Ethernet is widely used technology which makes

it suitable for interconnection of different domains. To

exchange data between the domains, we will use SOME/IP,

from the reasons already discussed in Section 2, and it can be

used over the Ethernet network.

Typically, IVI solutions can either run on Linux operating

system and use CommonAPI mechanisms for the inter-

process communication, or they can be Android-based. For

both of these cases, we will propose the solution architectures

in the following sections.

Since Adaptive AUTOSAR and CommonAPI both

implement the SOME/IP communication interfaces, this is the

easiest way to establish the communication between the two

domains in the SOA manner. The ADAS side is implemented

by following Adaptive AUTOSAR standard and the IVI

domain uses the CommonAPI middleware running on the

native operating system such as Linux. This scenario is

depicted in Fig. 2 and Fig. 3. Communication in Adaptive

AUTOSAR is handled by ara::com which natively supports

vsomeip as a library that implements SOME/IP standard. The

same vsomeip implementation is utilized in CommonAPI

SOME/IP stack. This means that serialization and

deserialization of data shall be handled in the same way, so

both sides will be able to interpret data properly.

Information from components on ADAS side are initially

given to the Service Proxy SWC via SOME/IP implemented

within the ara::com module. This data is furtherly forwarded to

the corresponding CommonAPI clients grouped together on

the IVI side in a single Service Proxy Manager instance (Fig.

2). Such inter-domain transfer is performed over SOME/IP on

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 4 of 7 ISBN 978-86-7466-930-3

demand of IVI applications or when the event/change is

captured.

The type of communication between the ADAS and the IVI

does not necessarily have to match the communication

between the ADAS Service Proxy and other SWCs which

means that IVI applications can request the data through the

Service Proxy Manager instance over method mechanism, but

the sharing information on the ADAS side can be sent to the

Service Proxy SWC from the actual service component as an

event for example.

Another approach is to implement separate services for

each CommonAPI client (Fig. 3) so the Service Proxy

components on both sides are unneeded and the information

will be provided from ADAS ara::com services to the IVI

CommonAPI clients included in particular application. The

first approach is easier to scale and can be used with the

variable number of application instances. Also, it can be

favorable from the safety perspective since it can contain

mechanisms to protect from other SWCs from being

jeopardize by IVI applications. On the other hand, the second

is superior in terms of reliability, because there is no single

central node which distributes the data between the

applications. This way, the malfunction of one service does

not affect the operability of others. Furthermore, the

monolithic design is harder to maintain, as even minor

changes require the entire integration cycle. The speed of

access to information is also one of the factors that is on the

side of the distributed approach.

As already said, Android has recently become the operating

system of choice for IVI applications, as most of the users are

familiar with it and it is available on a very large variety of

hardware. The interconnection of the ADAS domain with the

IVI domain running on the Android platform is a bit more

challenging for the implementation. Namely, Android itself

does not have mechanisms to implement SOME/IP client

which can communicate with ADAS side. Therefore, the

CommonAPI must also be used in this scenario in the exact

same way it was the case when non-Android OS was

examined, as it is presented in Fig. 4 and Fig. 5.

The CommonAPI clients are included within an Android

native service and provided information can be transferred to

both, custom applications and HAL modules over AIDL. The

entire CommonAPI stack can be built within an AOSP

(Android Open Source Project maintained by Google) with the

soong build system. Still, the vsomeip itself has some

dependencies, such as boost library, which can cause issues

while building within the AOSP. Further options are to build

CommonAPI client beyond the AOSP, with the Native

Development Kit – NDK, or even to use another

implementation of SOME/IP standard instead of vsomeip,

which would eliminate the dependencies such as the afore-

mentioned boost library. Nevertheless, CommonAPI clients

must be included in Android services so the data from ADAS

can be provided to applications or other services in IVI

domain.

Additionally, the mapping of SOME/IP service-client

communication paradigm from CommonAPI/AUTOSAR to

Android represents a challenge. Namely, AIDL files used for

Fig. 4. Centralized interconnection approach with Android on IVI side

Fig. 5. Distributed interconnection approach with Android on IVI side

interface generation provide the inter-process communication

by marshaling the object instances through the binder. This is

not suitable for the event-triggered traffic. Event-triggered

communication from service to clients within a SOA is

performed in a way that the client itself is only subscribed to

the events from service. This specific case cannot be covered

by using regular AIDL, because AIDL always assumes that the

communication is initiated from the client side

 Our approach was to incorporate the receiving (client) side

for broadcasts and events in the Android native service, and

further distribute this information to the interested applications.

The easiest way to achieve this is to set properties based on the

information received by the Android native service. The

interested applications can then read that particular property.

This approach has a big limitation since the data can only be

used to transfer flags and states since properties do not exist to

be used as IPC mechanisms.

 We went for the another, a slightly more demanding way

for implementation. It assumes the creation of a helper AIDL,

which will pass the interface object as a parameter from the

applications to Android native service, in order to enable the

Android native service to react on event-trigger signals from

CommonAPI by invoking methods from the passed object like

it is a client to the application. Furthermore, in order to avoid

forming a list of registered applications which methods will

be invoked when event-triggers we created additional helper

service in Java with which it will be communicated via that

helper AIDL and which will furtherly provide Intents to the

applications. Additionally, it is even possible to have stand-

alone Java service which will use the CommonAPI via Java

Native Interface – JNI. JNI is necessary in this scenario to

enable inter-operability between Java and C/C++ code, since

the COVESA provides CommonAPI middleware in C++

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 5 of 7 ISBN 978-86-7466-930-3

programming language.

V. CONCLUSION AND FURTHER WORK DIRECTIONS

This paper presented both, the theoretical and the practical

aspects of proposal for service-oriented communication

between ADAS and IVI domains. Background and motivation

for such binding are provided, along with the key challenges

and limitations as it is summarized in Table 1. Several

approaches were elaborated in order to satisfy system

heterogeneity. Additionally, the beneficial use-cases are

discussed in order to emphasize the value of bonding itself.

TABLE I

MAJOR CHALLENGES AND LIMITATIONS

Challenges Limitations

SOA paradigm

mapping

Implementing broadcast/events

with AIDL principles

Centralized or

distributed approach

Prioritization, robustness,

bandwidth

Data transfer

channel

Performance evaluation

Safety Enable safety solution for

Android

Generation of

inter-communication

Verification and tool

qualification

 In our future work, we will focus on the evaluation of the

latency, bandwidth and robustness in order to present

comprehensive comparison of the centralized service proxy

manager approach with the distributed approach, to determine

the optimal design.

The performance of data transfer channel shall be furtherly

examined too by considering the Audio Video Bridging (AVB)

and other mechanisms for big data integration. It is needed to

determine the exact use-cases where the data shall be

transferred only within SOME/IP request/response, and where

it is more suitable to open additional channel for data transfer.

Several aspects regarding data size and safety shall be

analyzed in order to define the optimal approach.

Safety requirements are maybe the most complex of all

challenges that we plan to address. Safety analysis implies the

detail examination on the system level too. It is not enough

only to implement mechanisms for Android native service to

control which applications can use it based on the given

permissions and to properly handle dead listeners and multiple

registrations which is done by now. Hazard analysis on the

system level involves hardware and OS safety competence and

certain communication determinism (Time-Triggered Ethernet

or Time-Sensitive Networking). Android itself currently

cannot have any Safety integrity level but QM [18]. From that

reason, it is mandatory to involve the hypervisor if the

communication must be initiated from the Android [19].

 The final challenge will be to automate the entire process of

providing resources from ADAS to IVI. This means that our

goal will be to generate the translation between ARXML,

FIDL and AIDL, as well as the generation of Android service

along with the code that is responsible for providing resources

from service on ADAS side to the IVI realm.

ACKNOWLEDGMENT

This research (paper) has been supported by the Ministry of

Education, Science and Technological Development through

project no. 451-03-68/2022-14/ 200156 “Innovative scientific

and artistic research from the FTS (activity) domain”.

REFERENCES

[1] P. Bajaj, M. Khanapurkar, “Automotive networks based intra-vehicular
communication applications. New Advances in Vehicular Technology

and Automotive Engineering”, pp. 207-230, (2012).

[2] B. Glas, J. Guajardo, H. Hacioglu, M. Ihle, K. Wehefritz, A. Yavuz,
“Signal-based automotive communication security and its interplay with

safety requirements.”, In Proceedings of Embedded Security in Cars

Conference, 2012
[3] M. Bellanger, E. Marmounier, E, “Service Oriented Architecture:

impacts and challenges of an architecture paradigm change”, In 10th

European Congress on Embedded Real Time Software and Systems,
(2020).

[4] G. L. Gopu, K. V. Kavitha, J. Joy, “Service oriented architecture based

connectivity of automotive ecus”, In 2016 International Conference on
Circuit, Power and Computing Technologies (ICCPCT), pp. 1-4, (2016).

[5] “Example for a Serialization Protocol (SOME/IP)”, [Online]. Available:

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-
1/AUTOSAR_TR_SomeIpExample.pdf”, last accessed 2022/10/1.

[6] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, J. Teich, “Formal analysis

of the startup delay of SOME/IP service discovery”, In 2015 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.

49-54, (2015).

[7] "Welcome to FRANCA!” [Online]. Available:
https://github.com/franca/franca, last accessed 2022/10/1.

[8] “CommonAPICppUserGuide”, [Online]. Available:

https://usermanual.wiki/Document/CommonAPICppUserGuide.112624
4679/html, last accessed 2022/10/1.

[9] G. Macario, M. Torchiano, M. Violante, M., “An in-vehicle

infotainment software architecture based on google android”, In 2009
IEEE International Symposium on Industrial Embedded Systems, pp.

257-260, (2009).

[10] N. Pajic, M. Bjelica, “Integrating Android to Next Generation
Vehicles”, In 2018 Zooming Innovation in Consumer Technologies

Conference (ZINC), pp. 152-155, (2018).

[11] “Android Interface Definition Language(AIDL)” [Online]. Available:
https://developer.android.com/guide/components/aidl, last accessed

2022/10/1.

[12] S. Fürst, M. Bechter, “AUTOSAR for connected and autonomous
vehicles: The AUTOSAR adaptive platform”, In 2016 46th annual

IEEE/IFIP international conference on Dependable Systems and

Networks Workshop (DSN-W), pp. 215-217, (2016).
[13] S. Aust, ”Paving the way for connected cars with adaptive AUTOSAR

and AGL”, In 2018 IEEE 43rd Conference on Local Computer

Networks Workshops (LCN Workshops), pp. 53-58, (2018).

[14] M. Kotur, N. Lukić, M. Krunić, G. Velikić, “One solution of camera

service in AUTOSAR ADAPTIVE environment”, In 2020 IEEE 10th
International Conference on Consumer Electronics, pp. 1-5, 2020.

[15] “Franca/ ARA:COM Interoperability”, [Online]. Available:

https://at.projects.genivi.org/wiki/download/attachments/16026116/GE
NIVI%20Franca-ARA-COM-tech-brief-20181219.pdf, last accessed

2022/10/1.

[16] K. Omerovic, J. Janjatovic, M. Milosevic, T. Maruna, “Supporting
sensor fusion in next generation android In-Vehicle infotainment units”,

In 2016 IEEE 6th International Conference on Consumer Electronics-

Berlin (ICCE-Berlin), pp. 187-189, (2016).
[17] M. Milosevic, M. Z. Bjelica, T. Maruna, N. Teslic, “Software platform

for heterogeneous in-vehicle environments”, In IEEE Transactions on

Consumer Electronics, pp. 213-221, (2018).
[18] L. Perneel, H. Fayyad-Kazan, M. Timmerman, “Can Android be used

for real-time purposes?”, In 2012 International Conference on Computer

Systems and Industrial Informatics, pp. 1-6, (2012).

[19] M. Bjelica, Z. Lukac, “Central vehicle computer design: software taking

over”, IEEE Consumer Electronics Magazine, 8(6), 84-90, 2019.

PROCEEDINGS, IX INTERNATIONAL CONFERENCE IcETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IcETRAN 2022 RTI3.5 - Page 6 of 7 ISBN 978-86-7466-930-3



Апстракт—Утврђивање сличности софтверског кода

представља област истраживања у оквиру софтверског

инжењерства. Поред великог броја домена у којима налази

примену оно представља кључни елемент за утврђивање

постојања софтверских клонова, а самим тим утиче на

софтвер током читавог његовог животног циклуса, током

дизајна, развоја и одржавања. У овом раду је, на основу

искустава аутора, дат преглед домена и карактеристике

кодова који се у датим доменима пореде. Описане су и

технике које се примењују у овој области независно од

домена примене, као и карактеристике кодова које се датим

техникама пореде. Такође је изложено пет сукцесивних

поступака које су аутори развили за примену у домену

откривања неовлашћеног коришћења лиценци. Поступци

обухватају описе техника за утврђивање сличности

бинарног кода, утицаја архитектуре рачунара на

утврђивање сличности бинарног кода, утицаја

трансформација преводиоца на утврђивање сличности

бинарног кода, могућности за коришћење неуралних мрежа

за утврђивање сличности бинарног кода, као и коришћење

секвенци операција за утврђивање сличности бинарног

кода.

Кључне речи—Софтверски клонови, сличност кода,

бинарни код, софтверске метрике, неуралне мреже.

I. УВОД

Анализа изворног кода програма има широки спектар

примена, које укључују од рангирања и категоризације

програма [1], преко откривања преписивања у домаћим

задацима [2], до откривања недостатака у програмима [3].

У овој анализи као један од важних корака јесте

утврђивање сличности делова кода. Постоје домени

примене код којих је утврђивање сличности кода од

пресудног значаја. Ови домени обухватају откривање

злонамерног кода [4], реверзно инжењерство софтверских

закрпа [5], откривање неовлашћеног коришћења лиценци

[6], и слично. Ова анализа се у већини случајева обавља

над изворним кодом програма, али се у неким

случајевима може обављати и над асемблерским кодом

програмима као и директно над бинарним записом

извршног кода програма. Без обзира да ли се ради анализа

изворног или извршног кода, као и без обзира на домен

примене поступак се заснива на откривању софтверских

клонова.

Овај рад има за циљ да представи област истраживања

која се бави анализом сличности софтверског кода. Рад

Захарије Радивојевић, доктор електротехнике и рачунарства –

Електротехнички факултет, Универзитет у Београду, Булевар краља

Александра 73, 11000 Београд, Србија (e-mail: zaki@etf.bg.ac.rs).
Милош Цветановић, доктор електротехнике и рачунарства –

Електротехнички факултет, Универзитет у Београду, Булевар краља

Александра 73, 11000 Београд, Србија (e-mail: cmilos@etf.bg.ac.rs).

даје сажетак истраживања у овој области и нема за циљ да

да систематичан прегед литературе у овој области. Рад је

организован тако да ће у другој глави бити представљени

домени примене утврђивања сличности кода. У трећој

глави објашњене постојеће технике утврђивања

сличности кода, док ће у четвртој глави бити

представљени резултати истраживања у области анализе

софтверског кода датог у бинарном облику које су аутори

спровели током више година. Последња, пета, глава

представља закључак овог рада.

II. ДОМЕНИ ПРИМЕНЕ ОДРЕЂИВАЊА СЛИЧНОСТИ КОДА

У овој глави ће бити описани карактеристични домени

у којима се може применити утврђивање сличности

софтверског кода. За сваки од домена биће наведена сврха

са којом се утврђивање сличности користи. Такође, за

сваки од домена биће наведен и угледни примерак алата и

описан његов начин функционисања. Преглед основних

карактеристика појединих домена је дат у табели 1.

A. Детекција клонова

У домену детекције клонова упоређивање сличности

кода се користи са циљем упаривања делова кода који

могу потицати од сличног изворног кода или од сличног

бинарног кода који потиче од истог изворног кода. Два

дела кода која представљају софтверски клон поседуј

исту семантику, али се разликују по нивоу синтаксне

сличности и на основу ње су класификовани у четири

типа. Два синтаксно идентична кода се класификују као

клонови типа 1, а могу се разликовати само по

форматирању и пратећим коментарима. Уколико између

два кода постоји и разлика у називима литерала онда се

класификују као клонови типа 2. Убацивање малог броја

додатних инструкција или промена редоследа

инструкција која не утиче на резултат извршавања кода се

класификује као клон типа 3. Све остале промене које

чувају семантику али у већој мери мењају синтаксу

оригиналног кода се класификују као клонови типа 4 [7].

Један од алата који се може користити у поступку

откивања софтверских клонова је ACD алат [8]. Овај алат

покушава да упари секвенце инструкција највеће могуће

дужине. За упаривање инструкција потребно је да

редослед упарених инструкција буде идентичан у оба

кода који се упарују и да се утврди да се инструкције нису

раније упариле. Као додатни услов се користи да је циљна

адреса скокова иста у односу на остале упарене

инструкције. Ако се током упаривања секвенци деси да се

мали број инструкција не може упарити оне се игноришу.

За сваке две упарене секвенце израчунава се тежина.

Сваки пут, када су две инструкције упарене, тежина се

Утврђивање сличности софтверског кода

Захарије Радивојевић, Милош Цветановић

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 1 of 9 ISBN 978-86-7466-930-3

повећава за одређену вредност. Када се у некој од

секвенци наиђе на инструкцију која се занемарује, да би

се наставило упаривање, тежина се умањује. Процес

упаривања две секвенце почиње са две инструкције које

се могу упарити и наставља се све док тежина претходно

упарених секвенци не буде једнака нули. Након тога,

покушава се са побољшањем упаривања две секвенце

откривањем нових инструкција које се могу упарити

унутар ових секвенци а које би могле повећати укупан

број упарених инструкција.

B. Откривање неовлашћеног коришћења лиценци

Све већи број кршења ауторских права у софтверској

индустрији доводи до огромних економских губитака за

носиоце ауторских права [9]. Једна од ситуација у којој

може доћи до кршења је лиценцирање софтвера са

двоструком лиценцом. Овај тип пословног модела се

обично користи да би се подржао софтвер отвореног кода

у комерцијалне сврхе. У таквом пословном моделу,

власник ауторских права софтвера нуди изворни код

бесплатно за некомерцијалну употребу, али остварује

профит продајом ауторских права компанијама које желе

да користе изворни код у својим производима. Повреда

настаје када се изворни код власника користи у производу

без лиценце добијене од власника. За разлику од домена

откривања клонова, где је изворни код углавном

доступан, одређивање сличности кода се у домену

кршења лиценци примењује углавном над извршним

кодом. Разлике које у извршним кодовима постоје

последице су употребе различитих преводиоца над истим

изворним кодом.

Један од алата који се може користити у поступку

откивања кршења лиценце је BAT алат који је заснован на

приступу описаном у раду [10]. Приступ користи три

технике за ублажавање негативних ефеката

потенцијалних разлика између кодова који се пореде.

Прва техника прикупља стринг литерале који се

појављују у коду који се пореди. Након тога, покушава да

пронађе исте литерале у коду за који се сумња да крши

лиценцу. Друга техника претпоставља да ће алгоритам

компресије података успети да компримује боље два кода

заједно ако међу тим кодовима постоје исте секвенце

инструкција. Успех се мери односом између величине

архиве, која се састоји од два кода, и укупне величине

архива које се појединачно састоје од само једног од два

кода које се пореде. Што је однос мањи, то се очекује већа

сличност између упоређених кодова. Трећа техника се

заснива на израчунавању бинарних разлика између

кодова. Што су разлике мање, вероватноћа да посматрани

код крши лиценцу је већа. Алат BAT користи се за

откривање да ли посматрани код крши лиценцу неког од

кодова из репозиторијума, а за ту сврху користи само

прву технику.

C. Откривање злонамерног кода

Злонамерни код је сваки код који има могућност да

оштети било који рачунарски систем [4]. Количина

злонамерног кода се сваке године све брже повећава и

представља озбиљну безбедносну претњу. Отуда је

откривање злонамерног кода критична тема у рачунарској

безбедности. У оквиру комерцијалних антивирусних

програма откривање злонамерног кода је засновано на

поређењима отисака метода са познатим отисцима

метода. Недостатак овог начина откривања злонамерног

кода је да не успева да открије нове варијације већ

познатог злонамерног кода. У циљу превазилажења тог

недостатка може се употребити одређивање сличности

злонамерног кода са циљем откривања дела кода који

показује слично понашање као што је понашање које има

код из већ познате колекције злонамерног кода.

Један од алата који се може користити у поступку

откивања злонамерног кода који користи одређивање

сличност кодова је алат који упоређује секвенце кодова

операција [4]. Током поређења посматрају се низови

кодова операција фиксних дужина и узима се у обзир да

различити кодови операција имају различиту

релевантност током поређења. Код овог алата се најпре

обавља анализа великог броја злонамерног кода и

регуларног кода и утврђује се релевантност кодова

операције. Затим се израчунавају фреквенције

појављивања свих секвенци изабране дужине у кодовима

који се упоређују. За сваки од кодова формира се вектор

чије су компоненте бројеви појављивања појединачних

секвенци. Свака од компоненти вектора се затим множи

са производом релевантности свих кодова операција који

се појављују у посматраној секвенци како би се

елиминисао шум који уноси ирелевантан код. На крају

сличност између кодова који се пореде се израчунава

коришћењем косинусне сличности ових вектора. Приступ

такође предлаже комбинацију добијених резултата за

неколико различитих дужина посматраних секвенци.

ТАБЕЛА 1. ПРЕГЛЕД ДОМЕНА ПРИМЕНЕ

Домен Тип кода Тип клона Циљ потраге Узрок разлика

Детекција клонова Изворни 1, 2, 3, 4 Сличне процедуре Програмер

Откривање неовлашћеног

коришћења лиценци
Изворни/Бинарни

1-Изворни,

4-Бинарни

Еквивалентне

процедуре
Преводилац

Откривање злонамерног

кода
Бинарни 1, 2, 3 Сличан код Програмер/Преводилац

Откривање рањивости

кода
Бинарни 1, 2, 3 Сличан код Програмер

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 2 of 9 ISBN 978-86-7466-930-3

D. Откривање рањивости кода

У домену рањивости софтверског кода могу се

разматрати анализа рањивости и откривање рањивости.

Анализа рањивости има за циљ да формалним методама

потврди или оповргне хипотезу да је софтвер рањив.

Приступи анализи рањивости се могу класификовати у

три категорије: статичка анализа, динамичка анализа и

хибридна анализа кода. Откривање рањивости има за циљ

да мање формалним поступцима лоцира конкретну

рањивост у коду. У овој области постоји више различитих

приступа који између осталог обухватају: тестове

пенетрације софтвера, насумично тестирање, и статичку

анализу токова података [11]. За разлику од претходно

разматраних домена у овом домену се одређивање

сличности софтверског кода користи за откривања

разлика између две различите верзије истог кода.

Један од алата који се може користити за потребе

откривања рањивости је алат који покушава да упари

делове кода односно процедура које су скоро идентичне

[12]. Први предуслов за упаривање процедура је да су

идентичне према свим датим критеријумима (тзв.

селекторима): броју основних блокова, броју ивица у

контролном графу тока и броју позваних потпрограма.

Други предуслов за упаривање је да не постоји друга

процедура која је идентична са процедурама које се

пореде на основу коришћених критеријумима. Да би се

смањило ограничење другог предуслова у свим корацима

алгоритма, посматрају се подскупови процедура из

кодова који се пореде а који су дати у бинарном облику.

Приликом формирања првих парова, подскупови се

формирају издвајањем процедура које задовољавају неку

карактеристику. Неке од карактеристика које се користе

су број улазних и излазних грана процедура у графу

позива, исти називи процедура, референце на исте

стрингове и број пута када су се неке од инструкција

појавиле. Када даље упаривање по датим

карактеристикама више није могуће, формирају се нови

подскупови процедура које се позивају из упарених

процедура. Подскупове такође формирају процедуре које

позивају упарене процедуре. Алгоритам се понавља за

сваке две упарене процедуре све до тренутка када даље

упаривање више није могуће. Унутар упарених процедура

врши се даље упаривање основних блокова и

инструкција.

III. ТЕХНИКЕ УТВРЂИВАЊА СЛИЧНОСТИ КОДА

У овој глави ће бити описане најзаступљеније технике

утврђивања сличности софтверског кода описане у

прегледним радовима [7], [13], [14], [15], [16], [17]. За

сваку од техника биће наведен кратак опис,

применљивост, могућности проширења, као и на које

типове софтверских клонова се најчешће примењује.

Такође, биће наведен и угледни примерак алата и описане

његов начин функционисања за сваку од техника. Поред

техника које су описане у наставку постоје и хибридне

технике код којих се може јавити синергистички ефекат

тако да могу детектовати додатне типове клонова у

поређењу са типовима клонова који се могу детектовати

било којом од коришћених техника детекције одвојено.

A. Технике засноване на поређењу текста

Технике засноване на поређењу текста посматрају

секвенцу линија изворног кода. Како би се пронашла

секвенца истоветних линија, стрингова или лексема

пореде се делови два изворна кода или њихови отисци.

Када се у датим деловима кода открије да су поједини

делови слични они се проглашавају за клонове одређене

класе. Ове технике се углавном користе за откривање

клонова код виших програмских језика и развијени алати

често подржавају више од једног програмског језика. У

случају да их је потребно проширити тако да подрже неки

нови програмски језик или није потребно ништа додатно

имплементирати или је потребно имплементирати

лексички анализатор. Ова техника се углавном може

применити за откривање клонова типа 1 и типа 3, а може

се применити и за откривање клонова типа 2. Ова техника

се у имплементацијама показала као техника средње

сложености.

Један од алата који користи технику засновану на

поређењу текста је SimCad алат [18]. Овај алат подржава

више програмских језика и то: C, C#, Java, Python. Процес

откривања клонова се заснива на техникама откривања

скривеног знања и рударења података и користи

алгоритам за груписање података као и претрагу података

засновану на вишенивојским индексима. Овај алат

извршава три фазе обраде: прелиминарну обраду,

откривање клонова и генерисање резултата. У фази

прелиминарне обраде користећи Simhash алгоритам се

генеришу отисци кода, након чега се обавља индексирање

формирањем вишенивојски индекси за потребе брже

претраге. У другој фази се обавља откривање клонова

тако што се фрагменти кода групишу у кластере

користећи Хемингово растојање између генерисаних

отисака који одговарају тим фрагментима кода. Парови

фрагмената који не прелазе одговарајући ниво сличности

бивају елиминисани из кластера, а такође мора постојати

и одређен број фрагмената кода у кластеру. У трећој фази

се врши чишћење добијених резултата као и њихов

приказ у одговарајућем формату.

B. Технике засноване на поређењу токена

Технике засноване на поређењу токена посматрају

секвенцу токена издвојених из изворног кода. Издвајање

токена се обавља у поступку лексичке анализе изворног

кода. Секвенца токена се формира као скуп токена на

одређеном нивоу гранулације. Срж ове технике

представља поређење токена који припадају суфиксним

стаблима или суфиксним низовима састављених од

секвенци токена. Ова техника откривања користи посебан

објекат који представља апстракцију конкретних

вредности идентификатора и литерала и који води рачуна

о очувању њиховог међусобног редоследа. Ове технике се

углавном користе за откривање клонова код виших

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 3 of 9 ISBN 978-86-7466-930-3

програмских језика, али је за разлику од техника

заснованих на поређењу текста зависност од програмског

језика већа. У случају да је потребно проширити их

подршком за нови програмски језик неопходно је

имплементирати лексички анализатор. Ова техника се

углавном може применити за препознавање клонова типа

1, 2 и 3, и представља једну од најцитиранијих техника за

одређивање сличности. Ова техника се у

имплементацијама показала као техника мање

сложености.

Један од алата који користи технику засновану на

поређењу текста је CCFinder алат [19]. Овај алат подржава

више програмских језика и то: C/C++, C#, Cobol, Java, VB.

Обрада коју спроводи овај алат се извршава у четири

фазе: лексичка анализа, трансформација међурезултата,

одређивање сличности и форматирање добијених

резултата. У фази лексичке анализе се свака линија

изворног кода дели у низ токена у складу са лексичким

правилима датог програмског језика. У другој фази се

обавља трансформација добијених низова токена

користећи правила трансформације и правила замене

одређених типова токена. У трећој фази се обавља

упоређивање свих подстрингова како би се

идентификовали парови клонова. На крају, у четвртој

фази, се препознати клонови пресликавају на линије

изворног кода из кога потичу.

C. Технике засноване на метрикама

Технике засноване на метрикама посматрају

карактеристике изворног програма издвојене користећи

скуп метрика. Издвајање карактеристика се обавља

полазећи од кода који је трансформисан у одговарајућу

структуру. Метрике се могу израчунавати на основу

имена, размештаја елемента, израза, контроле токе

функција, и сличних елемената структуре кода.

Одређивање сличности се обавља израчунавањем

удаљености између одговарајућих чланова у формираном

метричком простору. Ове технике се углавном користе за

откривање клонова код виших програмских језика и

зависност од програмског језика је велика, али се такође

могу примењивати и код нижих програмских језика. У

случају да је потребно проширити их подршком за нови

програмски језик неопходно је имплементирати не само

лексички анализатор, већ и одговарајући парсер. Техника

се може применити за препознавање свих типова клонова.

Ова техника се у имплементацијама показала као техника

средње сложености.

Један од алата који користи технику засновану на

метрикама је CLAN алат [20]. Овај алат подржава

програмске језике C/C++. Обрада коју спроводи овај алат

се извршава у четири фазе: препроцесирање директива,

парисирање и идентификација фрагмената, екстракција

метрика и идентификација клонова. Како је алат намењен

језицима C/C++ у првој фази се обавља препроцесирање

директива датог језика како би се добио изворни код који

се даље може обрађивати. У другој фази се обавља

екстракција декларација и дефиниција самих функција

користећи наменски парсер. У трећих фази се издвајају

метрике коју укључују бројање функција, локалних

променљивих, дељених и глобалних променљивих,

параметара, исказа скокова и петљи. У четвртој фази се

обавља идентификација клонова у поступку квантизација

метрика коришћењем прагова за елиминацију шума и

спектралне анализе резултата.

D. Технике засноване на апстрактним синтаксним

стаблима

Технике засноване на апстрактним синтаксним

стаблима трансформишу изворни код у структуру стабла

које се касније може упоређивати. За поређење стабала,

или њихових подстабала, се може користити више

различитих метода које укључују хеширање,

трансформацију у префиксна стабла, одређивање најдуже

заједничке секвенце употребом динамичког

програмирања. Ове технике се углавном користе за

откривање клонова код виших програмских језика и

зависност од програмског језика је велика, али се такође

могу примењивати и код нижих програмских језика. У

случају да је потребно проширити их подршком за нови

програмски језик неопходно је имплементирати

одговарајући парсер. Ова техника се углавном може

применити за препознавање клонова типа 1, 2 и 3. Ова

техника се у имплементацијама показала као техника

средње сложености.

Један од алата који користи технику засновану на

метрикама је DECKARD алат [21]. Овај алат подржава

програмске језике: C, Java, Php. Обрада коју спроводи

овај алат се извршава у пет фаза: генерисање парсера,

формирање стабла, генерисање вектора, кластеровање

вектора и додатна обрада. У првој фази се на основу

формалне граматике језика генерише парсер који се

користи и даљој обради. У другој фази се на основу

генерисаног парсера и улазног изворног кода формира

апстрактно синтаксо стабло које ће се даље обрађивати. У

ТАБЕЛА 2. ПРЕГЛЕД ТЕХНИКА

Техника Тип кода Тип клона Проширивост Сложеност извршавања

Поређење текста Изворни 1, 2, 3 -/Лексички Средња

Поређење токена Изворни 1, 2, 3 Лексички Мања

Поређење метрика Изворни/Бинарни 1, 2, 3, 4 Лексички, парсер Средња

Поређење апстрактног

синтаксног стабла
Изворни/Бинарни 1, 2, 3 Парсер Средња

Поређење графа зависности Изворни/Бинарни 1, 2, 3, 4 Парсер Велика

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 4 of 9 ISBN 978-86-7466-930-3

трећој фази се обрађује синтаксно стабло како би се

формирали вектори карактеристика фиксне дужине. У

овој фази се додатно може обавити и спајање делова који

имају заједничко подстабло. У четвртој фази се обавља

груписање вектора у кластере користећи еуклидско

растојање са циљем одређивања клонова. На крају се као

додатна, пета, фаза обавља додатна обрада како би се

користећи одређене хеуристике елиминисали погрешно

идентификовани клонови.

E. Технике засноване на коришћењу графа зависности

Технике засноване на коришћењу графа зависности

које постоје у графу тока контроле и у графу тока

података. Графовска репрезентација изворног кода се

дели на мање делове у зависности од понашања

фрагмента изворног кода. За деобу и поређење се може

користити неки од постојећих алгоритама за рад са

подстринговима и откривање сличности. Ове технике се

углавном користе за откривање клонова код виших

програмских језика и зависност од програмског језика је

велика. У случају да је потребно проширити их подршком

за нови програмски језик неопходно је имплементирати

одговарајући парсер. Ова техника се, као и рад са

метрикама, може применити за препознавање свих типова

клонова. Ова техника се у имплементацијама показала као

техника велике сложености.

Један од алата који користи технику засновану на

коришћењу графа зависности је PDG-DUP алат [22]. Овај

алат подржава програмске језике C/C++. Обрада коју

спроводи овај алат се извршава у четири фаза: формирање

графа зависности, проналажење парова клонова,

уклањање обухваћених клонова и груписање клонова у

веће групе. У првој фази се формира граф зависности код

кога чворови представљају наредбе програма и предикате,

а ивице представљају зависности података и контроле.

Друга фаза се обавља у неколико корака. На почетку се

обавља деоба свих чворова графа зависности у класе

еквиваленције на основу синтаксне структуре исказа и

предиката који ти чворови представљају, занемарујући

имена променљивих и литерале. У наредном кораку се

обавља најбитнији део, срж, алгоритма који проналази

изоморфне подграфове коришћењем технике одсецања

уназад (backward slicing) која датом програмском

сегменту додаје претходни повезани део. Поред

повратног одсецања користи се и техника одсецања

унапред која додаје наредни повезани део. У трећој фази

се обавља уклањање свих парова клонова који су већ

садржани у неким другим паровима клонова

идентификованим у претходном кораку. У четвртој фази

се обавља груписање идентификованих парова у веће

групе користећи особину транзитивности.

IV. ДОПРИНОСИ УТВРЂИВАЊУ СЛИЧНОСТИ КОДА

Откривање неовлашћеног коришћења софтверске

библиотеке је проблем детекције клонова који у случају

комерцијалних производа има додатну сложеност због

чињенице да је код доступан само у бинарном облику.

Циљ аутора је био да предложи приступ за процену нивоа

сличности између процедура који потичу из различитих

бинарних кодова. Основна претпоставка у

истраживањима је била да клонови у бинарним кодовима

потичу од употребе заједничке софтверске библиотеке,

односно истог изворног кода, која се може преводити

користећи различите алате. За потребе истраживања

бинарни код је дисасемблиран, а за потребе коришћења

других алата и декомпајлиран. Детаљан преглед

различитих приступа у препознавању сличности бинарног

кода дат је у прегледном раду [17] док ће у овој глави

бити описана истраживања аутора овога рада спроведена

стремећи ка наведеном циљу у области утврђивања

сличности бинарног кода. За свако од спроведених

истраживања биће наведен кратак опис истраживања,

кораци предложеног приступа а потом дати и остварени

резултати. Преглед основних карактеристика појединих

истраживања је дат у табели 3.

A. Утврђивање сличности бинарног кода

Прво истраживање је имало за циљ да утврди

применљивост постојећих техника и алата описаних у

претходним поглављима за утврђивање сличности

бинарног кода [6]. Имајући у виду да су постојеће технике

и алати превасходно намењени раду са вишим

програмским језицима у овом истраживању су нека

одабрана решења прилагођења раду са бинарним кодом

ради евалуације. У истраживању је такође предложен

нови приступ који је заснован на метрикама.

Предложени приступ за процену нивоа сличности

између две процедуре које се пореде је процес који се

обавља у четири фазе: издвајање метрика, упоређивање

метрика, трансформације метрика, израчунавање нивоа

сличности. У првој фази се спроводи статичка анализа

процедура и издвајање метрика тако да се за сваку

процедуру формира вектор метрика, при чему елементи

тог вектора могу бити скаларне или векторске вредности.

Ове метрике укључују одређивање броја и учестаности

свих инструкција, појединих типова инструкција

(аритметичких, логичких и трансфер података), скокова

(условних и безусловних скокова, позива процедура и

петљи) и које се представљају скаларним вредностима.

Поред скаларних вредности метрика коришћене су и

нескаларне, векторске, метрике која укључују бројање

сваке појединачне инструкције, сваке адресе доскока, и

сваке адресе позива процедуре. У другој фази се обавља

поређење сваке о издвојених метрика користећи

одговарајући функције за поређење. У трећој фази се

обавља трансформација и нормализација добијених

резултата поређења на основу претходног знања. У

последњој, четвртој, фази комбинују се одабране метрике

користећи одговарајућу формулу за формирање једне

вредности која представља сличност између две

процедуре.

Резултати истраживања су дали одговоре на три

истраживачка питања и довела до следећих закључака.

Прво питање се односило на разматрање додавања нове

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 5 of 9 ISBN 978-86-7466-930-3

метрике у скуп метрика предложних у постојећим

решењима и утврђивање доприноса приликом рангирања

процедура. Резултати спроведеног експеримента показују

да увођење нових метрика доприноси рангирању

процедура за све посматране позиције приликом

рангирања. Штавише, са новим метрикама предложени

приступ је постигао 1,44 пута бољи одзив (recall) за прву

посматрану позицију у поређењу са случајем када се

користе само постојеће метрике. Друго питање се

односило на проверу да ли рангирање процедура

обављено предложеним приступом зависи од преводиоца,

нивоа оптимизације програма и контекста проблема.

Према резултатима експеримента утврђено је да постоји

значајан утицај изабраног преводиоца на рангирање

процедура који је остварен у предложеном приступу.

Међутим, контекст проблема и опције превођења имају

мањи утицај на резултате. Треће питање се односило на

проверу да ли предложени приступ постиже боље

резултате од постојећих алата у смислу прецизности,

одзива и F2 мере. Одговарајући експеримент је показао да

предложени приступ постиже други најбољи резултат у

смислу прецизности и најбољи резултат у смислу одзива.

У случају посматрања F2 мере, предложени приступ

постиже резултате боље од осталих алата када се

посматра до првих шест позиција, док се максимална

вредност постиже када се посматрају само прве две

позиције при рангирању.

B. Утицај архитектуре рачунара на утврђивање

сличности бинарног кода

Друго истраживање је имало за циљ да утврди

применљивост приступа предложеног у првом

истраживању на другу архитектуру [23]. С обзиром да је у

првом истраживању коришћена ARM архитектура, за

потребе другог истраживања је коришћена x86

архитектура. Имајући у виду разлике у архитектури било

је потребно поновно креирање скупа података на коме ће

се обавити тестирање. Овом приликом је коришћен

сличан скуп програмских преводилаца, али не потпуно

исти, јер ниси сви преводиоци подржавали обе

архитектуре.

У оквиру другог истраживања је предложен нови

приступ који представља подскуп приступа предложеног

у првом истраживању. У овом новом приступу број

различитих корака који су спровођени током испитивања

у појединим фазама је редукован, и такође је редукован

број фаза. Предложени приступ уместо четири фазе има

само три фазе. У првој фази је смањен број издвојених

метрика, тако да су коришћене метрике које одређују

дужину процедуре, број скокова, број позиваних

процедура и броје инструкција. Иако је смањен број

метрика сачувано је постојање и скаларних и векторских

метрика. У другој фази се обавља поређење сваке о

издвојених метрика користећи одговарајући функције за

поређење, на истоветан начин као и првом истраживању.

Трећа фаза се може посматрати као обједињење треће и

четврте фазе из првог истраживања и у њој се израчунава

сличности користећи хармонијску средину, тежинску

суму и наивни Бајес.

Резултати за x86 архитектуру показују да је најбољи

одзив постигнут користећи приступ заснованим на

тежинској суми. Одзив се креће од 37% до 63% када се

посматра прва односно првих десет позиција. Поређење

резултата остварених на x86 и ARM архитектурама

показује да су постигнућа добијена за првих десет

позиција на обе архитектуре упоредива.

Ово показује да се технике поређења бинарних кодова

у извесној мери могу користити за поређење кодова који

су преведени за исту архитектуру рачунара. Истраживања

која су спровели други истраживачи након овог

истраживања, почев од 2016. године а која се баве

поређењем сличностима бинарног кода између

архитектура рачунара [17], су показала да се технике за

поређење могу примењивати не само на једној

архитектури рачунара, већ се могу примењивати и на

кодове код којих су једни преведени за једну архитектуру

рачунара а други за други архитектуру рачунара. Овиме

се проширује оно што је другим истраживањем утврђено

а то је да се технике поређења бинарних кодова у извесној

мери могу посматрати независно од архитектуре

рачунара.

C. Утицај трансформација преводиоца на утврђивање

сличности бинарног кода

Као што је претходно описано, резултати првог

истраживања су показали да постоји значајан утицај

изабраног преводиоца на рангирање процедура. Из тог

разлога треће истраживање је имало за циљ да детаљније

испита утицај трансформација програмског преводиоца

на утврђивање сличности бинарног кода [24]. У

истраживању је такође предложен и нови приступ који

дефинише нове технике за смањење утицаја процеса

превођења на перформансе поступка утврђивања

сличности бинарног кода.

У односу на приступ предложен у првом истраживању

у овом приступу је у првој фази, у којој се спроводи

ТАБЕЛА 3. ПРЕГЛЕД РЕЗУЛТАТА ИСТРАЖИВАЊА

Приступ Метрике Архитектура Мера сличности Одзив

1. Скаларна(13) векторска(6) ARM Формуле (7) 35,8%-73,1%

2. Скаларна(3) векторска(1) x86 Тежинска сума 37,6%-63.0%
3. Скаларна(13) векторска(6) ARM Формуле (7) 52,7%-81,8%

4. Векторска(1) ARM Неурална мрежа 49,2%-82,8%

5. Векторска(1) ARM Левенштајнова удаљеност 57,9%-88,9%

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 6 of 9 ISBN 978-86-7466-930-3

статичка анализа, додато пет техника које се спроводе као

независни кораци. Прва техника предлаже игнорисање

инструкција за рад са стеком. Ова техника је уведена је

уведена зато што је приликом анализе уочено да

различити преводиоци на различите начине интерагују са

стеком и да инструкције које том приликом користе не

носе информације о семантици кода. Друга техника

предлаже игнорисање инструкција за трансфер података.

Ова техника је уведена из сличног разлога као и прва

техника јер различити преводиоци користе различите

приступе приликом алокације регистара и трансфера

између њих или меморијске локације на којој се неки

податак налази. Трећа техника предлаже измену неких од

разматраних векторских метрика. Овде се уместо

посматрања статистике о појединим инструкцијама

посматра статистика о секвенцама инструкција одређене

дужине. Четврта техника предлаже уграђивање позваних

процедура у оквиру позивајуће процедуре. Ова техника је

уведена како би се елиминисала разлика између бинарних

кодова која може настати усред одлуке преводиоца да

обави аутоматско уграђивање у време превођења. Пета

техника предлаже увођење прага сличности између

процедура. Ова техника је уведена како би смањила број

лажно позитивно идентификованих клонова, с обзиром да

преводиоци могу различиту логику да имплементирају

користећи сличне инструкције.

Резултати истраживања су дали одговоре на три

истраживачка питања и довела до следећих закључака.

Прво питање се односило на одређивање постигнућа

постојећих решења зависе од тога да ли се користи

произвољни преводилац и произвољни ниво

оптимизације. Према резултатима експеримента утврђено

је да постоји значајан утицај изабраног преводиоца на

рангирање процедура, и за разлику од првог истраживања

овом приликом су тачно измерени утицаји који имају

промена преводиоца и промена нивоа оптимизације.

Друго питање се односило на проверу да ли додавање

сваке од предложених техника једне по једне основном

приступу повећава постигнуће ако се упоређене

процедуре преводе са произвољним преводиоцима и

нивоима оптимизације. Према резултатима експеримента

утврђено је да све технике, изузев друге технике које

филтрира инструкције трансфера података, доприносе

побољшању резултата утврђивања сличности. Треће

питање се односило на проверу да ли додавање свих

предложених техника заједно основном приступу

повећава постигнуће и да ли резултира синергистичким

ефектима ако се упоређене процедуре преводе са

произвољним преводиоцима и нивоима оптимизације.

Резултати експеримента су показали да додавање свих

техника има синергистички ефекат који доноси 6,7% до

9,3% повећања одзива за првих пет посматраних позиција

приликом рангирања.

D. Коришћење неуралних мрежа за утврђивање

сличности бинарног кода

Четврто истраживање је имало за циљ да испита

могућност употребе неуралних мрежа за утврђивање

сличности бинарног кода [25]. За разлику од приступа

описаном у претходним истраживањима који се заснивају

на посматрању метрика у овом истраживању су

посматране само инструкције. За потребе евалуације је

искоришћен исти скуп података који је коришћен у првом

и трећем истраживању.

Предложени приступ обавља поређење процедура у пет

фаза: издвајање инструкција, кодирање инструкција,

коришћење једног првог слоја неуралне мреже,

коришћење другог слоја неураллне мреже, поређење. У

првој фази се спроводи издвајање токена који одговарају

појединим инструкцијама. У другој фази се обавља

кодирање инструкција у целобројну вредност. У поступку

кодирања су примењене три технике: лексикографско

кодирање, семантичко мапирање и мапирање засновано

на класи. У трећој фази се полазећи од секвенце

кодираних инструкција формирана секвенца

карактеристика исте дужине користећи неуралне мреже.

Коришћена је Дуготрајно-краткотрајна меморија LSTM

(Long Short-Term Memory). У четвртој фази се обавља

издвајање одређеног броја карактеристика користећи

неуралну мрежу која занемарује одређен број улазних

карактеристика DNN (Dropout Neural Network). У

последњој, петој, фази комбинују се рачунање сличности

између две процедуре користећи издвојене

карактеристике и поступак агрегације и нормализације.

Резултати истраживања су дали одговоре на три

истраживачка питања и довели до следећих закључака.

Прво питање се односило на разматрање какве резултате

даје предложени поступак у односу на поређење

процедура само по њиховој дужини. Резултати

спроведеног експеримента показују да предложени

приступ даје бољи одзив на свакој посматраној позицији.

Друго питање се односило на проверу да ли рангирање

процедура обављено предложеним приступом зависи од

преводиоца. Према резултатима експеримента утврђено је

да постоји неки утицај изабраног преводиоца на

рангирање процедура од 0,55% до 1,64% када се посматра

одзив. Овај утицај је знатно мањи у односу утицај који је

присутан код првог и трећег приступа. Треће питање се

односило на проверу да ли предложени приступ постиже

боље резултате од постојећих алата у смислу одзива.

Одговарајући експеримент је показао да предложени

приступ постиже незнатно боље резултате, просечно

1,14%. Овај приступ је дао бољи одзив на вишим

позицијама, док у првих 9 позиција даје лошије резултате

у односу на трећи предложени приступ.

E. Коришћење секвенци операција за утврђивање

сличности бинарног кода

У првом истраживању је примећено да метрика која

узима у разматрање секвенцу инструкција највише

доприноси успешном одређивању сличности. Из тог

разлога пето истраживање је имало за циљ да детаљније

испита могућности те метрике и да је учини робуснијом

на промене које чини преводилац. Сходно томе

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 7 of 9 ISBN 978-86-7466-930-3

предложен је нови приступ заснован на испитивању

секвенце кодова операција [26].

Предложени приступ обавља поређење процедура у

четири фаза: издвајање инструкција, кодирање

инструкција, одређивање Левенштајнове удаљености,

рачунање релативне Левенштајнове удаљености. У првој

фази се спроводи издвајање токена који одговарају

појединим инструкцијама. У другој фази се обавља

кодирање инструкција у целобројну вредност на

истоветан начин ономе описаном у четвртом приступу. У

трећој фази се обавља рачунање Левенштајнове

удаљености користећи Needleman–Wunsch алгоритам. У

последњој, четвртој, фази се коришћењем релативне

Левенштајнове удаљености добија сличности између две

процедуре.

Ово истраживање је требало да да одговор на једно

истраживачко питање о томе какве резултате даје

предложени приступ у односу на остале приступе које су

аутори развили за ARM архитектуру. Резултати

спроведеног експеримента показују да предложени

приступ даје бољи одзив на свакој посматраној позицији

од свих претходно разматраних приступа. У односу на

приступ из четвртог истраживања даје од 3,59% до 9,45%

бољи одзив, као и од 0,17% до 4,73% бољу прецизност

када се посматрају првих 20 позиција. У односу на

приступ из трећег истраживања даје од 3,45% до 9,53%

бољи одзив, као и од 0,45% до 1,72% бољу прецизност

када се посматрају првих 20 позиција.

V. ЗАКЉУЧАК

Утврђивање сличности кода представља област

истраживања са дугом историјом, доста запажених

резултата али и перспективом за даљи развој у

будућности. Овај рад је имао за циљ да ову област

приближи истраживачима и да да осврт на истраживања

која су аутори спровели. У раду је најпре објашњен значај

и домени у којима се резултати истраживања примењују.

Након тога је дат сажет преглед најважнијих техника у

овој области. На крају су изложена истраживања и

резултати до којих су аутори дошли у претходним

годинама.

ЗАХВАЛНИЦА

Рад на овом пројекту је делимично био финансиран од

стране Министарства просвете, науке и технолошког

развоја Републике Србије (2022/200103), као и Фонда за

науку Републике Србије (АВАНТЕС).

РЕФЕРЕНЦЕ

[1] L. Li, T. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J.

Klein, Y. Le Traon, “Static analysis of android apps: A systematic

literature review,” Information and Software Technology, vol. 88, pp.
67-95, Aug. 2017, 10.1016/j.infsof.2017.04.001.

[2] M. Misic, Z. Sustran, and J. Protic, “A comparison of software tools for

plagiarism detection in programming assignments,” International
Journal of Engineering Education, vol. 32, no. 2, pp. 738-748, 2016.

[3] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. di Penta,

“How Open Source Projects Use Static Code Analysis Tools in

Continuous Integration Pipelines,” in IEEE International Working

Conference on Mining Software Repositories, 2017, doi:

10.1109/MSR.2017.2.
[4] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and P.

G. Bringas, “Idea: Opcode-Sequence-Based Malware Detection,” In: F.

Massacci, D. Wallach, N. Zannone, (eds) Engineering Secure Software
and Systems. ESSoS 2010. Lecture Notes in Computer Science, vol

5965. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

11747-3_3.
[5] T. Dullien and R. Rolles, “Graph-based comparison of executable

objects (english version),” Sstic, 2005, doi: 10.1.1.96.5076.

[6] S. Stojanović, Z. Radivojević, and M. Cvetanović, “Approach for
estimating similarity between procedures in differently compiled

binaries,” Information and Software Technology, vol. 58, pp. 259-271,

2015, doi: 10.1016/j.infsof.2014.06.012.
[7] C. K. Roy, J. R. Cordy, R. Koschke, “Comparison and evaluation of

code clone detection techniques and tools: a qualitative approach,” Sci.

Comput. Program, vol. 74, pp. 470–495, 2009.
[8] Davis, I.J. and Godfrey, M.W, “From Whence it Came: Detecting

Source Code Clones by Analyzing Assembler,” Proc. WCRE 10,

Beverly, MA, October 13–16, pp. 242–246. IEEE, Los Alamitos, 2010.
[9] P.E.Chaudhry, and A. Zimmerman “Protecting Your Intellectual

Property Rights: Understanding the Role of Management, Governments,

Consumers and Pirates,” Springer, New York, 2012.

[10] A. Hemel, K.T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding

Software License Violations through Binary Code Clone Detection,”

Proc. MSR 11, Honolulu, HI, May 21–22, pp. 63–72. ACM, New York,
2011.

[11] S. M. Ghaffarian and H. R. Shahriari. “Software Vulnerability Analysis

and Discovery Using Machine-Learning and Data-Mining Techniques:
A Survey,” ACM Comput. Surv. 50, 4, Article 56 (July 2018), 36 pages.

DOI:https://doi.org/10.1145/3092566

[12] T. Dullien, and R. Rolf, “Graph-based Comparison of Executable
Objects (English version),” Proc. SSTIC 05, Rennes, France, June 1–3,

pp. 1–13. STIC, Paris, 2005.

[13] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: a
systematic review,” Inform. Softw. Technol., vol. 55, pp.1165–1199,

2013.

[14] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, “Comparison
and evaluation of clone detection tools,” IEEE Trans. Software Eng.

vol. 33, pp. 577–591, 2007.

[15] C. K. Roy, J. R. Cordy, “A Survey on Software Clone Detection
Research,” Technical Report 2007-541, Queen’s University, Canada,

2007.

[16] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam and B. Maqbool, “A

Systematic Review on Code Clone Detection,” IEEE Access, vol. 7, pp.

86121-86144, 2019, doi: 10.1109/ACCESS.2019.2918202.

[17] I. Haq, J. Caballero, “A Survey of Binary Code Similarity,” ACM
Computing Surveys, vol. 54, no. 3, pp. 1-38, April, 2022.

[18] M. S. Uddin, C.K. Roy, K.A. Schneider, A Hindle, “On the

effectiveness of Simhash for detecting near-miss clones in large scale
software systems,” in: Proceedings of 18th Working Conference on

Reverse Engineering (WCRE 2011), Limerick, Ireland, 2011, pp. 13–
22.

[19] T. Kamiya, S. Kusumoto, K. Inoue, “CCFinder: a multilinguistic token-

based code clone detection system for large scale source code,” IEEE
Trans. Software Eng., vol. 28, pp. 654–670, 2002.

[20] E. Merlo, “Detection of plagiarism in university projects using metrics-

based spectral similarity,” in: Proceedings of Dagstuhl Seminar 06301:
Duplication, Redundancy, and Similarity in Software, Dagstuhl,

Germany, 2006, pp. 1–10.

[21] L. Jiang, G. Misherghi, Z. Su, S. Glondu, “DECKARD: scalable and
accurate treebased detection of code clones,” in: Proceedings of the 29th

International Conference on Software Engineering (ICSE 2007),

Minneapolis, USA, 2007, pp. 96–105.

[22] R. Komondoor, S. Horwitz, “Using slicing to identify duplication in

source code,” in: Proceedings of the 8th International Symposium on

Static Analysis (SAS’01), vol. LNCS 2126, Paris, France, 2001, pp. 40–
56.

[23] K. Berta, S. Stojanović, M. Cvetanović, Z. Radivojević, “Estimation of

Similarity between Functions Extracted from x86 Executable Files,”
Serbian Journal of Electrical Engineering, vol. 12, no. 2, pp. 253 - 262,

Jun, 2015.

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 8 of 9 ISBN 978-86-7466-930-3

[24] Z. Radivojević, M. Cvetanović and S. Stojanović, “Comparison of

Binary Procedures: A Set of Techniques for Evading Compiler

Transformations,” The Computer Journal, vol. 59, pp. 106–118, 2015.
[25] N. Pejić, M. Cvetanović, Z. Radivojević, “Estimating similarity between

differently compiled procedures using neural networks,” ТЕЛФОР

XXVII, Belgrade, Nov, 2019.
[26] N. Pejić, M. Cvetanović, Z. Radivojević, “Comparing Assembler

Procedures by Analyzing Sequences of Opcodes,” Telfor Journal, vol.

12, no. 1, pp. 46 - 49, Jul, 2020.

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT1.1 - Page 9 of 9 ISBN 978-86-7466-930-3

Apstrakt—U današnjem društvu veoma značajnu ulogu imaju

sistemi za identifikaciju korisnika. Složeni bezbednosni zahtevi

naterali su eksperte da istraže načine na koje se biometrijski

podaci mogu iskoristiti u utvrđivanju identiteta korisnika. U

ovom radu je prikazano softversko rešenje za akviziciju i

vizuelizaciju moždanih talasa (EEG) kao biometrijskih

podataka.

Ključne reči—biometrija; moždani talasi; akvizicija;

vizuelizacija

I. UVOD

Kontrola pristupa informacionim sistemima predstavlja

jedan od najznačajnijih aspekata zaštite, posebno kod sistema

koji sadrže bezbednosno osetljive podatke. Ona onemogućava

osobama koja nemaju pravo da pristupe nekom sistemu i

samim tim zloupotrebe podatke koje se nalaze u njemu.

Da bi se došlo do faze identifikacije korisnika, u smislu

zaštite informaciono-komunikacionih sistema, neophodno je

da se putem biometrijskih senzora prikupe biometrijski podaci

koji će se uporediti sa već postojećim podacima registrovanim

u samom sistemu [1] [2] [3]. Spajanje više biometrijskih

podataka smanjuje stepen sistemske greške prilikom

identifikacije korisnika. Samo prikupljanje podataka sa više

biometrijskih senzora stvara kompletniju sliku o korisniku.

Metod fuzije biometrijskih podataka uključuje sekvencijalnu

obradu biometrijskih modaliteta dok se ne dobije prihvatljivo

podudaranje u slučaju identifikacije korisnika [4] [5].

Ovaj rad daje prikaz softverskog rešenja koje omogućava

akviziciju i vizuelizaciju moždanih talasa (EEG) koje

predstavlja prvi korak u realizaciji rešenja za autentifikaciju

korisnika.

Ivan Tot – Vojna akademija, Univerzitet odbrane u Beogradu, Generala

Pavla Jurišića Šturma 33, 11000 Beograd, Srbija (e-mail:

ivan.tot@va.mod.gov.rs).
Boriša Jovanović – Vojna akademija, Univerzitet odbrane u Beogradu,

Generala Pavla Jurišića Šturma 33, 11000 Beograd, Srbija (e-mail:

borisa.jovanovic@vs.rs).
Dušan Bogićević – Vojna akademija, Univerzitet odbrane u Beogradu,

Generala Pavla Jurišića Šturma 33, 11000 Beograd, Srbija (e-mail:

dusan.bogicevic@vs.rs).
Tamara Gajić – Vojna akademija, Univerzitet odbrane u Beogradu,

Generala Pavla Jurišića Šturma 33, 11000 Beograd, Srbija (e-mail:

tamara.gajic@vs.rs).
Jordan Atanasijević – Vojna akademija, Univerzitet odbrane u Beogradu,

Generala Pavla Jurišića Šturma 33, 11000 Beograd, Srbija (e-mail:

jordan.atanasijevic@vs.rs).
.

II. PRIMENJENI HARDVERSKI UREĐAJ

Akvizicija predstavlja prikupljanje podataka iz spoljašnje

sredine u određeni električni uređaj, to jest senzor. Kada se

govori o biometrijskom podatku, onda je potreban

biometrijski uređaj za akviziciju takve vrste podataka [6].

Tako prikupljeni podatak može biti upotrebljen za

identifikaciju ljudi. Pojedini biometrijski podaci su jedinstveni

za svaku osobu i mogu služiti za identifikaciju osoba, kako u

civilnom sektoru npr. u zdravstvu, obrazovnim ustanovama,

firmama, tako i u vojnim, policijskim i državnim ustanovama

u cilju zaštite sopstvenih resursa. Biometrijska autentifikacija

(odnosno realna autentifikacija) se koristi u informacionim

tehnologijama kao oblik identifikacije korisnika i kontrole

pristupa zaštićenim resursima [7].

EEG autentifikacija koristi elektrofiziološki sistem za

praćenje aktivnosti mozga. Ova tehnologija je vrlo popularna i

može se koristiti bez ikakvih sporednih efekata na mozak. Do

sada je izvršeno nekoliko istraživanja o mogućnosti primene

EEG signala za autentifikaciju korisnika [8] [9].

Postoji nekoliko komercijalnih uređaja sa različitim brojem

elektroda koje se koriste za prikupljanje EEG podataka. Neki

od senzora koriste suve elektrode, a neki senzori koriste

mokre elektrode. Moždani režnjevi emituju EEG signale kao

odgovor na različite stimulanse i mentalna stanja.

Pretpostavlja se da postoji promenljiva razlika uzoraka EEG

talasa dok se vizuelizuje lozinku u mirnim uslovima u odnosu

na prinudu, zbog različitih mentalnih stanja, mozak proizvodi

različite obrasce analognog EEG talasa [10]. Na slici 1

prikazan je uređaj koji je korišćen u ovom radu.

Sl. 1. Neuro Sky Mind Wave 2-EEG biometrijski uređaj [11]

Softversko rešenje za akviziciju

i vizuelizaciju moždanih talasa

Ivan Tot, Boriša Jovanović, Dušan Bogićević, Tamara Gajić, Jordan Atanasijević

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 TR1.2 - Page 1 of 4 ISBN 978-86-7466-930-3

Uređaj prikazan na slici 1 vrši merenje alfa, beta, gama,

delta i teta moždanih talasa kao i trenutno stanje

usredsređenosti – fokusa (attention) i opuštenosti (meditation)

subjekta čiji se moždani talasi mere [12].

III. PRIKAZ SOFTVERSKOG REŠENJA

Izgled ekrana softverskog rešenja za akviziciju podataka sa

senzora prikazan je na slici 2. Rešenje je razvijeno u alatu

Microsoft Visual Studio 2017 korišćenjem programskog

jezika C# i biblioteke ThinkGear.dll proizvođača uređaja.

Sama biblioteka nudi funkcije za ostvarivanje komunikacije

sa uređajem. Dalji rad je podrazumevao prihvatanje vrednosti

koje dolaze sa uređaja u određenim vremenskim intervalima

definisanim i samom programskom kodu softverskog rešenja.

Radi usrednjavanja vrednosti korišćena je logaritamska

funkcija. Tako izračunate vrednosti su čuvane u realizovanoj

bazi podataka.

Sl. 2. Izgled ekrana za akviziciju podataka

Klikom na komandno dugme Poveži vrši se uspostavljanje

bluetooth konekcije sa senzorom. Nakon uspešno ostvarene

konekcije, klikom na dugme Prikupljaj vrednosti aplikacija će

prihvatati vrednosti sa uređaja i prikazivati ih na ekranu.

Komandno dugme Zaustavi privremeno prekida prihvatanje

vrednosti sa uređaja, a komandno dugme Diskonektuj prekida

konekciju sa uređajem.

Prihvaćene vrednosti mogu se čuvati u bazi podataka

realizovanoj u Microsoft SQL Server Express 2014 klikom na

komandno dugme Pun test svake 2 sekunde. U tom slučaju

neophodno je izabrati subjekta čiji se moždani talasi mere, tip

testa, broj merenja kao i zadati dužinu svakog testa u

sekundama. Tip testa može biti:

1. Opušteno – subjekat se potpuno opusti i zatvori oči,

2. Čitanje – subjekat dobija tekst koji treba da čita u sebi,

3. Lepe slike – subjekat posmatra slike koje u njemu bude

lepe emocije,

4. Matematika – subjekat dobija matematički zadatak koji

treba da reši,

5. Uznemiravajuće slike – subjekat posmatra slike koje

treba da izazovu ružne emocije (slike ratnih zločina,

iskasapljenih životinja i slično).

U ovoj fazi istraživanja predviđeno je da se radi do 5

merenja svih navedenih testova u različite dane. Nad uzorkom

od 60 testiranih lica (različitih polova, godina i nivoa

obrazovanja) uočeno je da postoje određena poklapanja

moždanih talasa naročito prilikom primene testa „Čitanje“.

Takođe, uočeno je da prilikom primene testa

„Uznemiravajuće slike“ značajan faktor imaju godine

testiranih lica. Na mlađe osobe slike ratnih zločina slabije

izazivaju ružne emocije, ali zato značajno reaguju na slike

iskasapljenih životinja. U slučaju starijih osoba, reakcije su

suprotne.

Za vizuelizaciju podataka razvijena ja web aplikacija u

alatu Microsoft Visual Studio 2017 korišćenjem ASP.NET

tehnologije. Na slikama 3 i 4 prikazane su delovi web stranica

realizovane aplikacije koje omogućavaju poređenje dobijenih

podataka.

Sl. 3. Web stranica za vizuelizaciju podataka za izvršena tri merenja

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 TR1.2 - Page 2 of 4 ISBN 978-86-7466-930-3

Web stranica prikazana na slici 3 omogućava vizuelizaciju i

poređenje podataka dobijenih iz uređaja za izabranog subjekta

i izabrani tip testa. Za svako merenje se po kolonama

prikazuje zbirni grafikon sa svim talasima (na x-osi su odbirci

vremena, a na y-osi logaritamske vrednosti izmerenih talasa),

a zatim i pojedinačni grafikon za svaki izmereni moždani

talas.

Web stranica prikazana na slici 4 takođe omogućava

vizuelizaciju i poređenje podataka dobijenih iz uređaja za

izabranog subjekta i izabrani tip testa, ali po pojedinačnim

talasima. Svaki grafikon prikazuje rezultate svih izvršenih

merenja po vrstama talasa (na x-osi su odbirci vremena, a na

y-osi logaritamske vrednosti izmerenih talasa).

IV. ZAKLJUČAK

Bezbednost informacionih sistem je jedno od najaktuelnijih

pitanja današnjice. Kontrola pristupa je pogotovo bitna jer

služi da spreči korisnike koji nemaju prava da pristupe i

koriste sistem. Pristup nepoželjnih korisnika je veoma opasan

skoro kod svih sistema zbog postojanja velike mogućnosti

zloupotrebe samog sistema i informacija koje se nalaze u

njemu.

Zbog značaja utvrđivanja identiteta potrebno je stalno raditi

na usavršavanju sistema za preciznu identifikaciju, odnosno

na poboljšavanju njihovih performansi, bilo kroz razvoj

biometrijskih uređaja, bilo kroz unapređenje metoda akvizicije

biometrijskih podataka. Jedan od potencijalnih načina je i

primena moždanih talasa za autentifikaciju korisnika.

Do sada su po ovom projektu razvijene dve aplikacije.

Jedna za akviziciju podataka sa senzora i druga za

vizuelizaciju podataka.

U daljem istraživanju planirana je detaljna analiza

dobijenih podatka primenom MATLAB softverskog paketa i

statističkih alata da bi se utvrdilo postojanje korelacije

moždanih talasa na odgovarajući tip testa kao i testiranje

značajno većeg broja lica kako bi rezultati planirane analize

bili tačniji. Ukoliko bi se potvrdilo postojanje korelacije, onda

bi se moždani talasi mogli koristiti pouzdano za

autentifikaciju korisnika.

ZAHVALNICA

Rad je nastao kao rezultat rada na naučno-istraživačkom

projektu “Upravljanje pristupom zaštićenim resursima

računarskih mreža u Ministarstvu odbrane i Vojsci Srbije na

osnovu multimodalne identifikacije korisnika”, pod brojem

VATT/3/18-20, od 2018. do 2020. godine na Vojnoj

akademiji Univerziteta odbrane u Beogradu.

LITERATURA

[1] I. Jayarathene, M. Cohen, S. Amarakeerthi, “BrainID: Development of

an EEG-Based Biometric Authentication System“, 2016.

[2] K. Lalović, I. Tot, A. Arsić, M., “Security Information System, Based
on Fingerprint Biometrics”, Acta Polytechnica Hungarica, Volume 16,

Issue Number 5, 2019.

[3] N. Maček, B. Đorđević, J. Gavrilović, K. Lalović, “An Approach to
Robust Biometric Key Generation System Design”, Acta Polytechnica

Hungarica, Volume 12, Issue Number 8, 2015.

[4] K. Lalović, M. Milosavljević, I. Tot, N. Maček, “Device for Biometric
Verification of Maternity”, Serbian Journal of Electrical Engineering-

Vol. 12, No. 3, 2015.

[5] A. K. Jain, A. A. Ross, K. Nandakumar, “Introduction to Biometrics”,
Springer, 2011.

[6] J. Ashbourn, “Biometrics: Advanced Identity Verification”, Springer,

2014.
[7] L. Feng, „Brain password: A secure and truly cancelable brain

biometrics for smart headwear“, International conference on Mobile

Systems, Applications and Services, ACM, 2018.
[8] S. Soni, S. B. Somani, V. V. Shete, „Biometric user authentication using

brain waves“, International Conference on Inventive Computation

Technologies (ICICT), India, 2016.

Sl. 4. Poređenje moždanih talasa

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 TR1.2 - Page 3 of 4 ISBN 978-86-7466-930-3

[9] A. A. Alariki, A. W. Ibrahimi, M. Wardak, J. Wall, „A Review Study of

Brian Activity-Based Biometric Authentication“, Journal of Computer
Science, 2018.

[10] https://www.mdpi.com/journal/biosensors/special_issues/wearable_bios

ensors
[11] https://cdn.sparkfun.com//assets/parts/1/2/9/9/4/14758-

NeuroSky_MindWave_Mobile2-04.jpg

[12] M. McDowell, “Brainwaves: The Nature Of Brain Waves & Their
Frequencies”, 2015.

ABSTRACT

Nowadays, user identification systems play a very important role

in modern society. Complex security requirements have led experts

to explore ways in which biometric data can be used to identify user

identities. This paper presents a software solution for acquisition and

visualization of brain waves (EEG) as biometric data.

Software Solution for Acquisition and Visualisation of

Brain Waves

Ivan Tot, Boriša Jovanović, Dušan Bogićević, Tamara Gajić,

Jordan Atanasijević

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 TR1.2 - Page 4 of 4 ISBN 978-86-7466-930-3

Apstrakt—Izloženost PM2.5 česticama izdvaja se kao vodeći

zdravstveni problem na globalnom nivou, a problem zagađenosti

vazduha predstavlja jedan od glavnih uzroka smrtnosti na

svijetu. Kako ovo predstavlja problem današnjice, zahtjevi da se

mjerenje kvaliteta vazduha vrši što češće na što više lokacija,

doveli su do razvoja niskobudžetnih senzora. Uz pomoć široko

dostupnih senzora grade se senzorski čvorovi, koji pribavljaju

podatke o trenutnim koncentracijama suspendovanih čestica, a

ovi podaci kroz kasniju analizu dovede do kasne informacije o

kvalitetu vazduha preko AQI - indeksa zagađenosti vazduha. U

ovom radu osim razvoja senzorskih čvorova, predstavljena je i

realizacija jedinstvene web platforme za prikazivanje,

arhiviranje i analizu kvaliteta vazduha, čime je realizovan

jedinstven i potpun sistem za prikupljanje i obradu podataka o

kvalitetu vazduha. Iako je platforma realizovana za područje

grada Čačka, gdje je izvršena integracija postojećih senzorskih

čvorova sa novo realizovanim čvorovima, može biti prilagođena i

drugim geografskim područjima te je široko upotrebljiva.
Ključne riječi—kvalitet vazduha, suspendovane čestice, PM2.5,

PM10

I. UVOD

Kvalitet vazduha je jedan od vodećih problema u mnogim

gradovima i ima direktan uticaj na kvalitet života. Izloženost

suspendovanim česticama PM10 i PM2.5 (eng. Particular

Matter) predstavlja jedan od vodećih uzroka smrtnosti u

svijetu i prema podacima Svjetska zdravstvena organizacija

(eng. World Health Organization - WHO) na svjetskom nivou

tokom godine dovede do između 4,2 i 8,9 miliona smrtnih

slučajeva [1]. Suspendovane čestice su sastavni dio prašine i

manje su od 10µm (PM10), odnosno 2.5µm (PM2.5) te

predstavljaju smješu čađi, dima, kiseline, uz prisustvo teških

metala, a izloženost PM2.5 česticama je prepoznat kao glavni

globalni zdravstveni problem [2]. Podjela na osnovu izvora iz

kojih potiču suspendovane čestice data je u Tabeli I, što

predstavlja glavni kriterijum pri izboru lokacije senzorskih

čvorova koji prate njihovu koncentraciju.
TABELA I

IZVORI PM2.5 ČESTICA [3]

Izvor Procentualno (%)

Saobraćaj 25%

Neodređenog ljudskog

porijekla

22%

Ogrjev u domaćinstvu 20%

Prirodna prašina i soli 18%

Industrijska djelatnost 15%

Dugoročnim praćenjem koncentracije suspendovanih

čestica moguće je detektovati u kojim oblastima gradova je

najveća koncentracija čestica te djelovati na izvore zagađenja

kako bi se smanjenjem koncentracije čestica unaprijedio

kvalitet života.

U gradu Čačku su ranije instalirana tri senzorska čvora za

mjerenje zagađenosti vazduha, koji nisu bili povezani u

jedinstvenu mrežu, niti su informacije o mjerenjima bile

dostupne korisnicima tj. građanima. U pitanju su senzorski

čvorovi Davis AirLink® kompanije Davis Instruments [4].

Navedeni senzorski čvorovi mjere količine suspendovanih

čestica PM1.0, PM2.5 i PM10 i u na osnovu njih izračunavaju

indeks kvaliteta vazduha (eng. Air Quality Index - AQI).

U proteklom periodu, realizacijom projekta prekogranične

saradnje „Transport related Air Pollution and Health impacts

in the Čačak city – AIRPOLISCA“, u decembru 2021. godine

[5], ovi senzorski čvorovi su povezani na jedinstven server sa

odgovarajućom bazom podataka gdje se čuvaju podaci o

izvršenim mjerenjima kvaliteta vazduha, obezbijeđen je

domen za Web aplikaciju i kreirana Web aplikacija za

prezentaciju podataka. Na taj način, broj građana Čačka koji

imaju pristup informacijama o kvalitetu vazduha nije

ograničen.

U nastavku aktivnosti vezanih za proširenje mreže

senzorskih čvorova za mjerenje kvaliteta vazduha u saradnji

sa gradom Čačkom, zaključno sa 08.02.2022. godine

postavljeno je osam novih senzorskih čvorova koji će biti

predstavljeni u nastavku.

Grad Čačak je pokriven sa senzorskom mrežom od

jedanaest senzorskih čvorova za prikupljanje podataka o

koncentraciji suspendovanih čestica i pristup podacima u

realnom vremenu je omogućen svima preko Web stranice

https://cacak.vazduh.net.

 U nastavku rada, poglavlje II, predstavljen je problem

kvaliteta vazduha te standardi i referentne vrijednosti za

ocjenu kvaliteta. Poglavlje III daje detaljnu analizu

realizovanog senzorskog čvora, a prezentacija prikupljenih

podataka je predstavljena u poglavlju IV.

II. KVALITET VAZDUHA

Prema uredbi za monitoring i zahtjevima kvaliteta vazduha

[6] kvalitet ambijentalnog vazduha se određuje pomoću

koncentracije sumpor dioksida SO2, azot monoksida NO i azot

dioksida NO2, ozona O3, ugljen monoksida CO i masene

koncentracije PM10 i PM2.5 čestica. Za mjerenje

Platforma za praćenje kvaliteta vazduha u gradu

Čačak

Nikola Kukrić, Božidar Popović, Slobodan Lubura, Zorana Mandić

Elektrotehnički fakultet, Univerzitet u Istočnom Sarajevu, Istočno Sarajevo, Bosna i Hercegovina

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT2.1 - Page 1 of 4 ISBN 978-86-7466-930-3

https://cacak.vazduh.net/

koncentracije navedenih čestica propisane su referentne

metode i standardi koju su dati u Tabeli II.

TABELA II [6]

VRSTE MJERENJA I REFERENTNE METODE

Vrsta mjerenja Metode/Specifikacije

Koncentracija

sumpor dioksida

SO2

EN 14212:2013

EN 14212/Cor1:2015

Ultraljubičasta

fluoroscencija

Koncentracija azot

monoksida NO i

azot dioksida NO2

EN 14211:2013

Hemiluminiscencija

Koncentracija

ozona O3

EN 14625:2013

Ultraljubičasta fotometrija

Koncentracija

karbon monoksida

CO

EN 14626:2013

Nedisperzivna infracrvena

spektroskopija

Masena

koncentracija

PM10 i PM2.5

EN 12341:2015

Gravimetrijska metoda

Ministarstvo zaštite životne sredine - Agencija za zaštitu

životne sredine Republike Srbije je 2015 pokrenula projekat

„Objedinjeni prikaz automatskog monitoringa kvaliteta

vazduha u Republici Srbiji“ gdje se prate navedeni parametri

[7]. Za ocjenu kvaliteta vazduha korišten je indeks kvaliteta

vazduha EAQI (eng. European Air Quality Index), koji je

2017. godine usvojila Evropska agencije za životnu sredinu

(eng. European Environment Agency) zajedno sa Upravom za

ekologiju Evropske komsije (European Commission’s

Directorate General for Environment). Pomenuti indeks

kvaliteta vazduha prikazan je u Tabeli III.

TABELA III

SKALA ZA OCJENU KVALITETA VAZDUHA

Oznaka

Zagađivač (satna

koncentracija u µg/m3)

PM10 PM2.5

Odličan 0 – 25 0 – 15

Dobar 25 – 50 15 – 30

Prihvatljiv 50 – 90 30 – 55

Zagađen 90 – 180 55 – 110

Izuzetno zagađen >180 >110

S obzirom na to da je raspoređivanje i postavljanje

akreditovanih stanica sa referentnim metodama za praćenje

navedenih parametara vazduha veoma skupo te da najveći

problem u gradovima uglavnom predstavljaju PM10 i PM2.5

čestice odlučeno je da se realizuju senzorski čvorovi za

mjerenje PM10 i PM2.5 čestica. Za senzore koji prate

koncentraciju suspendovanih čestica korišćeni su nisko

budžetni (eng. low ost) laserski senzori.

Prema standardu EN 12341:2015 PM česticu su „čestice

suspendovane u zraku koje su dovoljno male da mogu proći

kroz otvor za odabir veličine sa 50% efikasnosti pri

aerodinamičkom promjeru x µm.“ [8]. Referentna metoda je

gravimetrijska motoda koja podrazumijeva prikupljanje

prašine na uzorku u periodu od 24h te određivanje

koncentracije u opsegu od 1 – 150 µg/m3 za PM10 i 1 – 120

µg/m3 za PM2.5 čestice.

III. SENZORSKI ČVOR

Tokom istraživanje korišćena su tri niskobudžetna laserska

senzora i to: SDS011 od proizvođača Nova Fitness Co.,

PMS5003 i PMS7003 od proizvođača Beijing Plantower Co.,

Ltd, China. Pregled karakteristika senzora dat je u Tabeli IV.

TABELA IV

PREGLED KARAKTERISTIKA POJEDINIH NISKOBUDŽETNIH LASERSKIH

SENZORA SUSPENDOVANIH ČESTICA [9,10,11]

Karakteristika
Senzori

SDS011 PMS5003 PM7003

Dimenzije

(mm)
71x70x23 50x38x21 48x37x20

Napajanje

(V)
4.7~5.3 4.5~5.5 4.5~5.5

Potrošnja

(mA)
70 ± 10 <100 <100

Temperaturni

opseg (°C)
-20 ~ +60 -40 ~ +80 -40 ~ +80

Opseg

mjerenja

čestica

(µg/m3)

0 –

999.9

0 – 500

efktivno,

>1000

maks

0 – 500

efktivno,

>1000

maks

Navedeni optički senzori mjere intenzitet svjetlosti koja se

raspršuje pod uticajem prašine koja se uvlači u senzor.

Senzori se sastoje od svjetlosne diode (eng. Light Emitting

Diode – LED), fotodiode, ventilatora koji uvlači vazduh sa

česticama prašine i većeg broja sočiva za fokusiranje snopa

svjetlosti [12].

U
la

z

v
a
z
d
u

h
h
a

D1

Iz
la

z

v
a
z
d
u

h
a

Vazduh

Vazduh

Ventilator

Sl. 1. Struktura optičkog senzora suspendovanih čestica

Prilikom realizacije senzorskog kao najbolji omjer

kvalitet/cijena odabran je senzor PMS7003.

Senzorski čvor se sastoji od mikrokontrolerske jedinice,

senzora i jedinice za napajanje. Mikrokontroler korišćen u

realizaciji senzorskog čvora je ESP-WROOM-32, koji

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT2.1 - Page 2 of 4 ISBN 978-86-7466-930-3

pomoću UART modula komunicira sa PMS7003 senzorom i

pomoću Wi-Fi modula prenosi očitane podataka sa senzora

brzinom do 150 Mbps, sa snagom signala od 20 dB. Za

napajanje je korišćen Hi-Link naponski modul. Navedeni

modul ima naponsku konverziju sa 90-245 VAC na 5VDC sa

maksimalnom izlaznom snagom od 3W [13]. Napon od

5VDC je potreban za napajanje senzora PMS7003. S obzirom

da je za napajanje mikrokontrolera potrebno 3.3V korišćen je

naponski regulator AMS1117-3.3V koji za ulazni napon u

opsegu 4.8VDC – 6.5VDC daje na izlazu 3.3VDC.

Za crtanje šeme i realizaciju štampane ploče korišćeno je

programsko okruženje Eagle. Izgled štampane ploče

senzorskog čvora sa prednje i zadnje strane prikazan je na Sl.

2.

Sl. 2. Izgled štampane ploče senzorskog čvora

 Tokom realizacije senzorskog čvora realizovano je kućište

u kojem se smještaju pomenute elektronske komponente, koja

treba da omogući protok vazduha prema senzoru PMS7003 te

da elektronske komponente budu zaštićene od vremenskih

uslova. Izgled senzorskog čvora i sastavljene ploče sa

senzorom PM10, PM2.5 prikazani su na Sl. 3.

Sl. 3. Izgled senzorskog čvora i sastavljene ploče

 Tokom instalacije senzorskog čvora, potrebno je senzoru

proslijediti parametre za pristupnu Wi-Fi tačku preko kojeg

će senzor slati očitane podatke. Za te potrebe kreirana je

Android aplikacija VazduhNet koja omogućava jednostavno

prosljeđivanje pristupnih podataka i praćenje očitanja sa svih

dodatih senzora. Prilikom dodavanja uređaja svakom se

dodjeljuje jedinstveni Token koji omogućava autorizaciju

prilikom slanja podataka, a na osnovu MAC adrese i lokacije

uređaja radi se autentifikacija senzorskog čvora.

IV. PREZENTACIJA SENZORSKIH OČITANJA

A. Za administraciju senzorskih čvorova i prezentaciju

očitanih vrijednosti kreirana je Web aplikacija koju možemo

podijeli na administratorsku i klijentsku.

Administratorska aplikacije je kreirana pomoću Yii2

okruženja, a njene osnovne funkcionalnosti su: administracija

senzorskih čvorova (dodavanje, brisanje, izmjene), prijem

podataka od senzorskih čvorova, obrada podataka, tabelarni

prikaz svih očitanja i generisanje izvještaja koji sadrže očitane

podatke. Yii2, čiji naziv potiče od kineske riječi Yii -

"jednostavan i evolucijski", je PHP okvir visokih performansi,

baziran na komponentama za brzi razvoj modernih web

aplikacija [14]. Komunikacija između senzorskih čvorova i

web aplikacije se odvija preko programskog interfejsa

aplikacije (eng. Application Programming Interface – API).

Pristup administratorskoj aplikaciji je dozvoljen samo

autentifikovanim korisnicima.

B. Klijentska aplikacija

Klijentska aplikacija je dostupna svim korisnicima i

omogućava korisnicima da prate zagađenost vazduha.

Prilikom otvaranja Web stranice prvo se prikazuje poruka o

trenutnom kvalitetu vazduha na području grada i odgovarajući

„emitikon“ u zavisnosti od kvaliteta vazduha. Prikaz kvaliteta

u slikovnoj formi sa emotikonima omogućava korisnicima

jednostavnije i brže dobijanje informacija. Takođe uz

emotikone stoje i preporuke građanima i informacije o uticaju

kvaliteta vazduha na zdravlje stanovništva.

Sl. 4. Emotikoni i preporuke građanima u zavisnosti od kvaliteta vazduha

Na stranici je omogućeno mapiranje senzora pomoću

biblioteke Leaflet. Leaflet je vodeća JavaScript biblioteka

otvorenog koda za interaktivne mape prilagođene mobilnim

uređajima. Težak je samo oko 32KB, i ima sve funkcije za rad

sa mapama koje će većini programera biti potrebne, a ako

postoji potreba za dodatnim stvarima tu su i razni dodaci i

efekti [15]. Leaflet je dizajniran za jednostavnu upotrebu,

brzinu i kvalitet. Radi lako i efikasno na gotovo svim desktop

i mobilnim platformama, postoji i mogućnost ekstenzija sa

dosta dodataka. Podaci o mapama koje se koriste su dobijeni

od strane OpenStreetMap platforme. Svaki senzor na mapi je

obojen odgovarajućom bojom u zavisnosti od trenutne

zagađenosti. Klikom na jedan od senzora na mapi otvara se

novi prozor na kojem se prikazuju detalji kvaliteta vazduha

odnosno trenutni kvalitet, tačne koncentracije PM10 i PM2.5

čestica i vrijeme posljednjeg mjerenja, dok klikom na naziv

senzora otvaramo grafik kvaliteta vazduha u vremenskom

rasponu od montiranja senzora pa do posljednjeg mjerenja. Na

dnu Web stranice nalazi se i sumirani grafik kvaliteta vazduha

svih senzorskih čvorova i dodatne informacije šta prestavljaju

PM10 i PM2.5 čestice. Izgled mape prikazan je na Sl. 5.

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT2.1 - Page 3 of 4 ISBN 978-86-7466-930-3

Sl. 5. Mapa sa označenim senzorskim čvorovima

V. ZAKLJUČAK

U radu je prezentovan senzorski čvor sa mogućnošću

praćenje količine PM10 i PM2.5 čestica. Realizovana je

platforma za praćenje, koja omogućava jednostavnu

prezentaciju podataka grafički, prikaz na mapi i tabelarno. U

narednom periodu je planirano da se dobijena mjerenja

upoređuju sa mjerenjima koja su dobijena referentnim

metodama i da se odredi koeficijent kalibracije. Takođe,

planirano je unapređenje mobilne aplikacije da pomoću

lokacije korisnika ispisuje poruku kvaliteta vazduha.

ZAHVALNICA

Zahvaljujemo se gradu Čačak, koji je obezbijedio novčana

sredstva za realizaciju projekta praćenja kvaliteta vazduha.

LITERATURA

[1] OECD, The Economic Consequences of Outdoor Air Pollution, 2016
dostupno na: https://www.oecd.org/env/the-economic-consequences-of-

outdoor-air-pollution-9789264257474-en.htm.

[2] Richard Burnett, Hong Chen, Mieczysław Szyszkowicz, i drugi, Global
estimates of mortality associated with long-term exposure to outdoor

fine particulate matter, 115 (38) 9592-9597, 2018.

[3] Bulot, F.M.J., Johnston, S.J., Basford, P.J. i drugi. Long-term field
comparison of multiple low-cost particulate matter sensors in an

outdoor urban environment. Sci Rep 9, 7497 (2019).

https://doi.org/10.1038/s41598-019-43716-3J
[4] Davis AirLink® Quality Monitor, Davis Instruments, dostupno na

https://www.davisinstruments.com/pages/airlink .

[5] Rezultati projekta prekogranične saradnje, https://banjaluka.net/na-

elektrotehnickom-fakultetu-predstavljeni-rezultati-projekta-

prekogranicne-saradnje/.

[6] Službeni glasnik Republike Srbije br, 11/2010, 75/2010 i 63/2013

[7] Objedinjeni prikaz automatskog monitoringa kvaliteta vazduha u
Republici Srbiji, http://www.amskv.sepa.gov.rs/

[8] Ambijenatlni zrak – Standardna gravimetrijska metoda za određivanje

masene koncentracije PM10 ili PM2.5 u suspendovanoj čestičnoj tvari
(EN 12341:2014)

[9] Laser PM2.5 Sensor specivation SDS011, https://cdn-

reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
[10] Digital universal particle concentration sensor PMS5003,

https://aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-

pms5003-manual_v2-3.pdf
[11] Digital universal particle concentration sensor PMS7003,

https://download.kamami.pl/p564008-

PMS7003%20series%20data%20manua_English_V2.5.pdf
[12] Marek Badura, Piotr Batog, Anetta Drzeniecka-Osiadacz, Piotr Modzel,

Optical particulate matter sensors in PM2.5 measurements in

atmospheric air, 2018, https://doi.org/10.1051/e3sconf/20184400006

[13] 3W Ultra-small PowerModule PM03/PM01/PM09/PM12, Hi-Link,

https://datasheet.lcsc.com/szlcsc/1909111105_HI-LINK-HLK-

PM24_C399250.pdf
[14] Yii2 dokumentacija, https://www.yiiframework.com/doc/guide/2.0/en

[15] Leaflet dokumentacija, https://leafletjs.com/reference.html

ABSTRACT

PM2.5 exposure stands out as a leading health problem globally

while the problem of air pollution is one of the leading causes of

death in the world. Due to the poor air quality, the requirement for

frequent measures in as many locations as possible has led to the

development of low-cost sensors. Sensor nodes are being developed

by utilizing widely accessible sensors, their use is to acquire the

current concentration of particle matters. This raw data is later

processed and used to calculate the air quality index – AQI. This

paper presents the development of sensor nodes, as well as the

development of a unique web platform. The web platform is

equipped with a graphic representation of the date and history of

archived data that had been collected. While this platform has been

developed for the city of Čačak, it can be adapted to other

geographical areas and it can be broadly used.

Air Quality Monitoring Platform in the City of Čačak

Nikola Kukrić, Božidar Popović, Slobodan Lubura,

Zorana Mandić

ZBORNIK RADOVA, LXVI KONFERENCIJA ETRAN, Novi Pazar 6 - 9. juna 2022.

ETRAN 2022 RT2.1 - Page 4 of 4 ISBN 978-86-7466-930-3

https://www.davisinstruments.com/pages/airlink
https://banjaluka.net/na-elektrotehnickom-fakultetu-predstavljeni-rezultati-projekta-prekogranicne-saradnje/
https://banjaluka.net/na-elektrotehnickom-fakultetu-predstavljeni-rezultati-projekta-prekogranicne-saradnje/
https://banjaluka.net/na-elektrotehnickom-fakultetu-predstavljeni-rezultati-projekta-prekogranicne-saradnje/
http://www.amskv.sepa.gov.rs/
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://cdn-reichelt.de/documents/datenblatt/X200/SDS011-DATASHEET.pdf
https://aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf
https://download.kamami.pl/p564008-PMS7003%20series%20data%20manua_English_V2.5.pdf
https://download.kamami.pl/p564008-PMS7003%20series%20data%20manua_English_V2.5.pdf
https://doi.org/10.1051/e3sconf/20184400006
https://datasheet.lcsc.com/szlcsc/1909111105_HI-LINK-HLK-PM24_C399250.pdf
https://datasheet.lcsc.com/szlcsc/1909111105_HI-LINK-HLK-PM24_C399250.pdf
https://www.yiiframework.com/doc/guide/2.0/en
https://leafletjs.com/reference.html

	067-RTI2.5.pdf
	I. Introduction
	II. Research work, goal and motivation
	III. MS Hyper-V and QEMU/KVM
	IV. Hypotheses about expected behavior
	V. Test configuration and benchmark application
	VI. Testing and results
	VII. Conclusion
	Literature:

