PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

One Solution For Multimedia Subscription
Using Blockchain

Igor Srdi¢, Porde Glisi¢, Marija Jovanovié¢

Abstract—With the expansion of blockchain technologies in
different areas from health care to voting systems and emerging
demand on video content delivery platforms, it is interesting to
investigate possibilities to combine those two into a new system
that will help digital content availability. We present and discuss
relevant work in the industry. Paper proposes one solution for
subscription rights management using blockchain technologies.
Proof of concept is done using the Ethereum blockchain
ecosystem for a video-on-demand service. A similar approach
could be used in other fields of DTV services, like cable TV
subscription services.

Index Terms—subscription management, blockchain, smart
contracts, Ethereum, DTV content subscription, Android TV,
solidity, web3;j.

I. INTRODUCTION

Blockchain is a growing list of records linked to the use of
the cryptocurrency method. After the sudden expansion of
Bitcoin [1], it became clear that the potential of blockchain is
a lot greater than its use for money. This technology’s
decentralized system is fertile ground for many ideas and
provides a new approach and opportunities [2]. There are
ideas like a voting system for elections, where vote theft and
rigging of results could not occur, and many other ideas, each
of which aims to improve the current system, which has its
virtues and many flaws. The system’s main problem with the
central authority, with a central database, is that such systems
have one critical point - the system’s bottleneck, which, if
endangered, puts the whole system in danger.

Ethereum is a platform that works on top of blockchain
technology which has revolutionized this field. It is a platform
that allows its users to develop their decentralized applications
[3]. It also resolves one additional issue in such networks:
they cannot function without many users - nodes - who work
on them.

Buying and renting multimedia content is the default
functionality on all TVs, most often as Video On Demand
(VOD), where users temporarily purchase rights to view a
movie or series. With increased online shopping abilities, new
options come to mind. What if a user can sell its rights to
another user? Does it always have to be between the content
provider and the end-user? In the real world, there are second-
hand shops for used goods. Why don’t such digital shops exist

Igor Srdi¢ — RT-RK Institute for Computer Based Systems, Novi Sad,
Srbija, (e-mail: Igor.Srdic@rt-tk.com)

Porde Glisi¢ — RT-RK Institute for Computer Based Systems, Novi Sad,
Srbija, (e-mail: Djordje.Glisic@rt-tk.com)

Marija Jovanovi¢ — RT-RK Institute for Computer Based Systems, Novi
Sad, Srbija, (e-mail: Marija Jovanovic@rt-tk.com

ICETRAN 2022

RTI.1 - Page 1 of 4

in the entertainment industry? Blockchain technology may be
the right step towards that. It is reasonable to think that users
would rather sell digital valuables than offer them free to the
public. Some movements are done in that direction with the
appearance of NFT (non-fungible token).

Some work has been done toward decentralized video
streaming platforms using blockchain technologies in work by
Tan et al. [4]. Focus that work was around content creators,
advertisers, and consumers and the availability of the content
in networks based on blockchain. More discussion on the
usability of blockchain smart contracts in the entertainment
industry could be found in the work of Pons [5].

Working consortium grouped around Sony, Samsung, and
Google work on creating a next-generation video
entertainment blockchain. A published white paper [6]
presents the new architecture of the distributed content
delivery network called Theta Mainnet 4.0. They have
anticipated Theta Metachain and Theta Edge Network, as
illustrated in Fig. 1. The first network is distributed
blockchain of blockchains, where the “metachain” name
comes from, resulting in support for an unlimited number of
blockchains. The second network is responsible for interaction
with users. Using publicly available Theta Video API, users
can upload content and request access to content. The network
has endpoints for protected content storage, encoding new
content uploaded, and delivery to the user with an appropriate
NFT-based digital rights management (DRM) system. It is
expected to be available by the end of 2022.

Theta Metachain

. UsersiPlatforms | £

Fig. 1. The architecture of Theta Mainnet 4.0 with Theta Metachain and
Theta Edge Network

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

In this paper, we are investigating the possibilities of using
blockchain technology in the world of digital television. In
particular, we tried to use the smart contracts concept from the
Ethereum ecosystem to allow users to buy video content from
their homes [7]. Once a transaction is initiated, it takes more
than 10 seconds for the change to be permanently stored in the
blockchain, which is the waiting time for the return values of
these functions. Detailed workflow can be seen in Fig. 2. This
implies that Ethereum applications are not suitable for all
systems that need faster data exchange and cannot correctly
use current blockchain technology.

A smart contract as a programming code cannot be changed
once it enters the blockchain. The mistakes and oversights are
only solvable by creating new smart contracts and redirecting
the applications to new contracts. The main problem is that
errors are discovered only when they happen, and in such a
system, the results of errors are harmful to the user.

— —

Miner adds it
to the block

Block is
broadcasted

Nodes validate block
containingtransactions

l

Initiate
Transaction

G G

Transaction has
completed

Change is broadcasted Block is added to the
in network chain

Miner gets a reward

Fig. 2. Workflow for a transaction in the Ethereum network

In this work, smart contracts will be used for exchanging
digital currencies for video-on-demand (VOD) services. We
will introduce a digital wallet, an application used for storing
digital funds (for example, cryptocurrency). On the side of the
DTV device, a DTV application will be altered to support
additional payment methods for its video-on-demand service.
Those are the building blocks necessary to complete the task
of creating a subscription management system with
blockchain technology.

The paper consists of three parts. The second section will
present functional requirements. The third section will explain
all technologies and implementation of the system and the TV
application adopted to be the client for the blockchain
payment method. The fourth and last part contains an
overview of the solution itself, shortcomings, and problems
that have arisen during implementation and testing, and
finally, we will discuss possible improvements.

Il. REQUIREMENTS

Purchase of content should be made on the chain itself. It
should be implemented as an Ethereum smart contract that
will provide functionalities such as purchase and storage
purchase history. Purchased history has two parts, valid and
expired. A valid subscription is the one that is still active and
allows the owner to consume it (Fig. 3), in our case, to watch
a movie or TV show. An expired subscription is essential for
validating existing payments and resolving any problems.

ICETRAN 2022

RTI.1 - Page 2 of 4

Additional requirements involve checking content access
rights for specific users, content validation by the provider,
etc. There is a set of functions related to administration, which
can be performed exclusively by the provider. It must be
ensured that the user cannot call them.

The Turning

Fig. 3. The user interface for the Video on Demand service

In addition to the account user created in the TV
application, the user also received his Ethereum account and
can deposit money at physical ATMs or online. That order is
permanently linked to a TV application account, and every
content purchase is made through that account.

In this research, we did not want to use any currency assets.
Instead, we selected the Ethereum test network Rinkeby. In
this network, the currency has no real value, so we could
deposit any amount of money into the account for testing
purposes. For that reason, work does not cover depositing
currencies. That does not reduce the applicability of the
proposed solution, as only the target network has to be
changed to make it usable in the real world.

Executing the method from smart contracts may take some
time, but it is necessary to ensure that the application runs
smoothly while waiting for the answers to those calls. An
example screen for purchasing content is shown in Fig. 4. In
particular, Android has a built-in capability to interrupt
application execution that does not work for a while by
sending ANR - Application Not Responding error.

TURNING
\ J
)

This movie is locked Ethereum Wallet 0.0083 ETH

T To watch it, please choose your paymentmethod

° TrueMoney Wallet 149 THB
W TruePoint 299 POINT

I

Fig. 4. The user interface for Video on Demand service when content is
locked (needs payment)

After the purchase, the user should be able to view the
content for 30 days before the first review or two days from

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

when the content was first viewed. After the period expires,
the content should be locked again until the next purchase.
Given that money can be sent by calling smart contract
functions, it is necessary to ensure that, in case of any error
when calling these functions, the payments are aborted, and
user funds remain untouched in the account.

I1l. IMPLEMENTATION

To implement our system, we had to implement two main
components. The first one is smart to contact that will be
positioned in the Ethereum test network. We used Solidity
high-level object-oriented programming language especially
designed for Ethereum networks. We selected Remix
development environment (IDE), written in JavaScript and
running under any web browser as a development
environment.

On the client-side, we had an Android TV application [7]
running on a set-top box (STB) device [8][9]. The application
was written in Java. We have selected the web3j library for
integration into the existing application to establish a
connection with Ethereum smart contract APl [10].

For storing the user’s digital currency, we selected a digital
wallet Metamask, which was used to create the Ethereum
account. Its purpose is to save access to the digital currency
details in the Ethereum network.

To simulate the Ethereum network, we created a network
of miners. For that purpose, we used an Infura cluster made of
full nodes. The cluster can execute contracts and alter the
chain.

Part of the smart contract is present in Fig. 5. There are
three fields of integer type. The myEtherValue field is an
auxiliary used to convert some numerical data into currency
Ether. At the same time, shortDuration and longDuration
represent the lengths of the period in which the buyer is
allowed to watch content. The ctAddress field is of the
address type, the type of data it represents in Solidity public
addresses of users in the Ethereum network. This is the
address of the crypto-telecom (provider) which will have
administrator privileges in the system.

In addition, there are two structures, Content and Deal.
Structure Content represents the content and contains fields
for name, price, and one auxiliary field. Structure Deal is
proof of purchase, the contract concluded between provider
and customer. It has the identifier of purchased content, the
time of the purchase, the time when the user first looked at the
content, and the field that indicates whether the content is still
viewed. The content folder, which maps the content identifiers
to data of the Content type, contains all available content of
the provider. Maps validDeals and archivedDeals map users
(addresses) into concluded contracts and are in the valid and
expired contracts, respectively.

The Web3j library receives the output of the Solidity
compiler [11][12] consisting of binary and ABI file and
generates a Java surrounding class smart contract, in this case,
class CryptoTelecom. Some of the methods of this class:

- load - loading the contract instance with the given

ICETRAN 2022

RTI1.1 - Page 3 of 4

address, web3j object, user credentials, and gas variables.

- order — Wrapper method of the smart contract order
function. The return value is RemoteFunctionCall
<TransactionReceipt>, which represents identification of
transaction. Once the function is called, it will return its value
after the function is executed, the state of the contract is
changed, and that state is saved in the new transaction as part
of a new block in the blockchain.

contract CryptoTelekom {

uint256 private myEtherValue;
uint256 private shortDuration;
uint256 private longDuration;

address payable private ctAddress;

struct Content {
string name;
uint256 price;
bool isValid;
)

mapping(string => Content) content;
struct Deal {
string contentId;
uint256 startedTime;
uint256 startedWatchingTime;
bool startedWatching;

validDeals;

mapping(address =)
s) archivedDeals;

mapping(addr

assert(msg.sender == ctAddress);

vent Order(uint256 ret);
vent CheckDeal(bool ret);
vent ValidDeal(string contentId,
uint256 startedTime,
uint256 startedWatchingTime,
bool startedWatching,
bool isRetValid);
Fig. 5. The interface of the contract class in Solidity.

m mm

- getOrderEvents - Read events from the order method in a
given transaction.

- getNumValidDeals - Wrapper method for function
getNumValidDeals() from smart contract. Example of a return
method that does not change the state of the contract. The
return value is immediately available because only data is
read.

Details about how we used Metamask, Rinkeby network,
and Infura cluster can be found in [13]. Also, the authors
omitted implementation details about the Android Java
application as reference code can be found in [9]. Work does
not lose clarity or applicability without those details, as that
information can be found both in given references and online
resources.

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

IV. CONCLUSION

The novelty that this approach brings, and at the same time
one of its advantages, is that proof of the contract is no longer
stored in the provider's database - all are stored on the
Ethereum chain. This is interesting for the provider for two
reasons. The first is that maintenance of the database by the
provider is completely avoided, and the second is that no one
can write data to a chain without the consensus of the entire
network. Therefore, no one can falsely present themselves as
having the right to specific content. Furthermore, users who
purchase content are confident that their content rights will
remain untouched because data ends on a chain that cannot be
changed.

The virtues of this approach are numerous. However, there
are also drawbacks. Developers must pay close attention when
developing smart contracts because consequences in a system
that operates with money can be substantial [14]. Also, it is
important to optimize the program code as much as possible.
The gas is charged to the initiator of the transaction. Calls to
the smart contract function are calculated for every assembler
instruction executed. Therefore, additional effort should be
made to make the code as optimal as possible to lower gas
prices. Also, as transaction initiators are charged for gas, and
transactions are initiated by the users who buy the content, the
provider has no operating cost for the network. Another
approach is to subtract the price gas from the total price of the
content that the user buys, which would result in the situation
where the provider pays for network service and the user for
the content.

ICETRAN 2022

[1]
[2]

31

(4]
(5]
6]

[71

(8]
(9]

[10]
[11]
[12]
[13]

[14]

RTI.1 - Page 4 of 4

REFERENCES

S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system."
Decentralized Business Review, 2008.

M. A. Hugoson, “Centralized versus decentralized information
systems.” IFIP Conference on History of Nordic Computing. Springer,
Berlin, Heidelberg, 2007. Vitalik Buterin, “Ethereum Whitepaper”,
https://ethereum.org/whitepaper/, 2013.

Y. Tan, S. Kadhe, K. Ramchandran, “Proof-of-Stream: A Robust
Incentivization Protocol for Blockchain-based Hybrid Video on
Demand Systems”, UCB/EECS-2021-42, 2021

J. Pons, “Blockchains and smart contracts in the culture and
entertainment business”, Réalités industrielles, 2017

N. Szabo, “The Idea of Smart Contracts”,
https://nakamotoinstitute.org/the-idea-ofsmart-contracts/, 1997.
Theta Labs, “Theta Mainnet 4.0 - Introducing Theta Metachain to
Power Web3 Businesses”, accessed May 2022,
https://assets.thetatoken.org/theta-mainnet-4-whitepaper.pdf

I. Pan, N. Luki¢, “Design and architecture of software systems:
Android-based systems”, FTN Publishing, Novi Sad, 2015.

K. Yaghmour, “Embedded Android”, O ‘Reilly Media, 2013.

N. Schapeler, “A example to Ethereum Development On Android using
Web3j and Infura”, accessed May 2022,
https://medium.datadriveninvestor.com/an-introduction-to-ethereum-
development-on-android-using-web3j-and-infura-763940719997
"Ethereum documentation”, accessed May 2022,
https://ethdocs.org/en/latest/

"GitHub", Solidity, accessed May 2022,
https://github.com/ethereum/solidity

“Solidity documentation”, accessed May 2022,
https://solidity.readthedocs.io/en/v0.6.9/.

1. Srdic, BSc thesis “Realizacija multimedijalne pretplate koris¢enjem
blokéejna”, ETF, 2020

K. O'Hara, "Smart Contracts - Dumb Idea," in IEEE Internet
Computing, vol. 21, no. 2, pp. 97-101, Mar.-Apr. 2017, doi:
10.1109/MIC.2017.48.

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

Model-Driven Approach to Blockchain-Enabled
MLOps

Nenad Petrovi¢

Abstract—In recent years, machine learning has reached quite
sophisticated level of usability within applications across various
domains — ranging from booking reservations and media content
delivery to business and healthcare. However, the deployment of
machine learning models, together with parameter tuning and
periodic training, which are necessary to maintain satisfiable
performance, represent time consuming processes, requiring
various types of skills - both DevOps and data analysis-related.
In this paper, we leverage model-driven approach in synergy
with code generation with aim to automatize the so-called
MLOps activities, relying on ZenML framework for pipeline
automation and Kubernetes for containerized task orchestration.
On top of that, we leverage Blockchain for infrastructure
provisioning. Our goal is to reduce the cognitive load of
infrastructure and services management within systems relying
on machine learning. The framework is evaluated in scenarios
using PyTorch-based deep learning predictive models. According
to the results, the proposed approach reduces both the time and
skill required for successful MLOps activities.

Index Terms—DevOps; Kubernetes;
Blockchain.

MLOps; PyTorch;

I. INTRODUCTION

Continuous integration and delivery have become standard
in software engineering workflow within the last decade. The
goal of so-called DevOps practice is to align the deployment
of software artifacts with business goals which are enabled by
them, so the customer’s organization can benefit from them as
quickly as possible. However, operations related to underlying
infrastructure management are becoming more and more
complex, due to heterogeneity of services, devices and
increasing performance demands. Therefore, due to fact that
machine learning (ML) services are recognized as crucial
enablers of novel usage scenarios across various domains, a
distinct subfield with focus on them has emerged, known as
MLOps [1-4]. It is an extension of now well-established
DevOps paradigm with aspects specific to service delivery in
machine learning, such as continuous model training for
prediction performance improvement, rapid deployment and
parameter tunning towards automated generation of complex
ML task pipelines [1-4].

In this paper, the focus is on reducing the complexity of
MLOps-related activities and service delivery relying on
model-driven approach [5]. Moreover, the business-related

Nenad Petrovi¢ is with the Faculty of Electronic Engineering, University
of Ni§, Aleksandra Medvedeva 14, 18000 Nis, Serbia (e-mail:
nenad.petrovic@elfak.ni.ac.rs), (https://orcid.org/0000-0003-2264-7369)

ICETRAN 2022

aspects of infrastructure resource provisioning and usage
charging using blockchain by the provider are also
considered. The main contributions of this paper are the
following: 1) MLOps metamodel — defining the structure of
user-created model instances representing machine learning
pipelines with several distinct steps together with aspects
related to its deployment 2) code generator — leverages the
model for automated code generator covering several aspects:
pipeline script, predictive model, infrastructure management
3) blockchain-based transaction model making use of smart
contracts for renting high-performance computing resources
aiming accelerated machine learning.

In our previous works, metamodel-based approach in
synergy with ontologies was leveraged for automated
container-based service deployment in Fog Computing [6].
On the other side, a similar method was adopted in [7] for
generation of predictive models starting from high-level
predictive problem descriptions aiming state-of-art mobile
network infrastructure planning and management.

Il. BACKGROUND

A. ZenML

ZenML [8] is open-source, high-level Python framework
for machine learning pipeline automation. It is available as
Python library in form of function decorators and specific
classes inside scripts, while it imposes pre-defined code
structure. The overview of main ZenML-related concepts and
terminology is given in Table I.

TABLE I
ZENML CONCEPTS OVERVIEW
Concept Description
Repository A special type of directory, declared used zenml

init command. Each ZenML action must take place
within a repository, which is created

Step Single stage within ML flow, representing a node of
in ML flow computation graph. Implementation-wise,
they represent Python functions with typed
parameters in signature for both arguments and return
value. Decorator used is eéstep, while step result
caching can be enabled using enable cache=True
parameter

Pipeline A sequence of steps. It connects all the steps, their
inputs and outputs. Decorator used is @pipeline.
Moreover, it is possible to set the list of external
libs/dependencies from .txt file can be done using
requirements_file attribute of the decorator. It is
run by invoking pipeline.run() method inside
Python script. Optionally, a scheduler object can be
assigned for periodic execution of certain steps

enabling scenarios such as continuous model training.

RTI.2 - Page 1 of 6

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

Stack Represents environment and configuration of MLOps
platform infrastructure. It consists of: artifact store,
metadata store, container registry, orchestrator and
custom step operators. Creating a new stack with
desired parameters is done using stack register,
while it is run using stack up command., which has
to be done before running any pipeline.

Persistent storage of step results.

Artifact store

Materializer Defines how data is passed between steps.
Serialization and deserialization are used while
storing/retrieving results.

Keeps the data related to pipeline, step and
experiment configuration and references for tracking
of inputs/outputs within artifact store created within

ML pipeline.

Metadata store

Orchestrator Component for scheduling and running pipeline steps
Container Stores Docker images required for running the steps
registry

Custom step | User-defined environments for running ML flow tasks
operator within Docker containers

Integration Enable usage of various third-party tools enriching

ML development like pytorch, tensorflow and
sklearn. Apart from that, it also includes orchestrator-
enabled stacks, such as local-kubeflow (Kubernetes-
based) and airflow.

Depiction of ZenML architecture showing how the
previously mentioned concepts are related is given in Fig. 1.

N ——

Metadata store Container registry

Artifact store
Docker images

Orchestrator

Serialize
Deserialize

e ——— e T |
Fig. 1. ZenML concepts and their relations.

Additionally, Fig. 2 shows the programming workflow
using ZenML. First, we initialize a repository inside the
desired directory where we place our Python script. After that,
in Python code we define the typical steps of ML flow: 1)
importer — downloading and loading dataset 2) trainer —
passing through dataset and updating model weights for new
predictions 3) evaluator — estimates how good the prediction
performance is, according to the given metric (accuracy for
classification; mean relative error - MRE for regression).
Moreover, we connect the steps in a sequence as shown
within the pipeline object and finally run the pipeline object
instance.

ICETRAN 2022

Initialize
repository

Create steps

pipeline.

Define pipeline

Run pipeline

Fig. 2. ML pipeline creation using ZenML in Python.

B. Kubernetes

Kubernetes [9] represents an open-source platform whose
goal is to enable deployment and management of
containerized services run on multi-server clusters.
Furthermore, it provides convenient access to useful features,
such as scalability, fault-tolerance and declarative
configuration. Table Il gives an overview of key concepts
within Kubernetes-based architectures.

RTI.2 - Page 2 of 6

TABLE I

KUBERNETES CONCEPTS OVERVIEW

Concept Description

Control plane Cluster management component, responsible for
global decisions, and scheduling

Node Worker machines within the cluster running
containerized apps

Pod Smallest deployable unit, which consists of one or
more app containers. These containers share storage,
network specification and config. Optionally, might
include data volumes for persistent storage

Service A logical set of pods

Kubectl Comamnd-Line Interface (CLI) tool for running
commands against Kubernetes cluster, such as:
-Deployment (kubectl apply
deployment.json and kubectl create
deployment dep name -
image=docker image
-Scaling up/down (kubectl scale --
replicas=num resource name)
-Retrieval of node, pod and service info (kubectl
get pods, nodes, services)

Despite the fact that Kubernetes provides automatic

scheduling capabilities, there might be situations where
deployment of pod has to be done on a specific node. In that
case, we leverage node labels. The corresponding command
for labelling a node has the following form: kubectl label
nodes <node name> label name=label value. After
that, when we want to create a pod using YAML
configuration file, it would be necessary to make use of
property and set it as
label name:label value.

nodeSelector

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

Kubernetes-based architecture is depicted in Fig. 3. In this
paper, we make use of containerized custom step operators in
ZenML run as Kubernetes pods, which are actually containers
running PyTorch code. Moreover, node labels are leveraged in
order to have low-level scheduling control and determine
where each of these steps will be executed, enabling
additional flexibility.

| -
Admin

Fig. 3. Kubernetes-based containerized app architecture.

I1l. IMPLEMENTATION

A. Workflow Overview

Model-driven workflow of the proposed framework for
automated ML-related task deployment is illustrated in Fig. 4.
In the first step, user creates a deployment diagram model
instance which describes the ML pipeline and underlying
execution infrastructure details. After that, the model is
parsed, so code generator constructs Python script containing
the ML pipeline code relying on ZenML and PyTorch in
synergy with numpy. Moreover, corresponding Kubernetes
orchestrator commands are generated in order to ensure that
distinct pipeline steps are executed on the desired cluster
nodes. Additionally, the allocated resources are charged to the
customer by parametrizing smart contracts for blockchain-
based transactions, while the price might vary due to presence
of deep learning accelerator cards on some of the nodes.
Finally, the generated machine learning Python script is
executed on the allocated computing nodes.

= hES e

User n1iops model Python code Resource
Kubernetes commands leasing
Smart contract

Fig. 4. Blockchain-enabled model-driven MLOps workflow.

ML pi'ﬁeline
execution

B. MLOps Metamodel

When it comes to adoption of model-driven engineering,
we make use of metamodel which defines the structure of
user-created deployment diagram (shown in Fig. 5). For
implementation, Ecore [10] within Eclipse Modelling
Framework (EMF) [11] in Java is used, which automatically
generates all the auxiliary classes for model manipulation,
together with convenient GUI-enabled editor.

The highest-level concept is Pipeline, which consists of one
or more machine learning tasks, referred to as Step. A Pipeline

ICETRAN 2022

RTI1.2 - Page 3 of 6

can be executed periodically for purpose of continuous
training, which is defined by repeatTime property. Moreover,
each of the Steps can be one of the following type with
specific, distinct properties: Importer, Trainer or Evaluator.
Importer represents ML task which downloads the
corresponding dataset and opens the downloaded file. In this
context, it is necessary to set URL corresponding to the
location where dataset is stored online, denoted as onlineData.
Otherwise, if dataset is local and already present on disk,
another parameter is used — localData. When it comes to
trainer step, it is possible to set its learning rate, number of
batches, select the target implementation technology, but we
make use of PyTorch in this paper. Each trainer can use pre-
created model, given by modelPath or it is necessary to define
a custom neural network. For custom neural network, its
architecture is described using Layer element, while each of
them has type (such as Convolutional — in image classification
or standard Fully Connected in Multi-Layer Perceptron),
number of processing units (neurons) and activation function
(such as ReLU, softmax, sigmoid). Finally, the performance
metric used within Evaluator step depends on the type of
machine learning task, and we cover two possibilities relevant
to supervised learning as predictionType property of Pipeline
— classification (Accuracy) and regression (Mean Relative
Error).

On the other side, the aspects of distinct Step deployment
are covered by the metamodel as well. For each pipeline part,
there is an attribute targetLabel, describing which worker
node within Kubernetes cluster would be preferred for
execution of pod created within custom step operator.
Additionally, infrastructure executing the pipeline is
represented as Cluster that consists of Nodes. For each Node,
the following properties are customizable, such as label,
location, IP address, accelerator (whether it has dedicated
hardware for deep learning attached) and wunit price
(depending on the node performance).

£ Pipeline |

= repeatTime : EDouble = 0.0

= predictionType : EString ‘ H Cluster

= customerld : EInt "
masterlP : EString

= joinToken : EString

=

L[] step

[0..1] node
H step

= targetLabel : String
= estimatedTime : Eint

[0.1] node

& Node

= |P: String

. = label : EString
T accelerated : String

< unitPrice : EDouble = 0.0

= providerld : EString

E Trainer |
= alpha : EDouble = 0.0
= modelPath : EString
= batch: Int
= epochs : Int

| 5 Importer | | ‘ E evaluator |

= localData : EString
= onlineData : EString

{ H Accuracy]

| J ()

= activation : EString
* layerType : EString
= numModes : EString

Fig. 5. UML class diagram of MLOps metamodel.

ISBN 978-86-7466-930-3

PROCEEDINGS, IX INTERNATIONAL CONFERENCE ICETRAN, Novi Pazar, Serbia, 6 - 9. june 2022.

C. Code Generation

The user-drawn deployment model is first parsed and then
traversed relying on Ecore-