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Abstract— Measuring wind turbine noise poses significant 

challenges due to dynamic wind conditions, low-frequency 

components, and the presence of residual noise sources, including 

insect vocalizations. Long-term measurements are crucial for 

capturing the complex interplay of variables influencing sound 

propagation and for informing effective mitigation strategies. Our 

study leverages extensive insect sound recordings to develop 

classification methods for automatic exclusion of insect noise 

during wind turbine noise measurements with feature extraction 

and unsupervised learning. We highlight the challenges posed by 

dynamic environmental conditions and advocate for innovative 

approaches to filter out residual noise sources and enhance the 

accuracy of wind turbine noise assessment. Insect calls 

significantly affect sound pressure levels (SPL) at lower wind 

speeds. Moving forward, interdisciplinary research efforts and 

technological advancements are essential to address the complexity 

of wind farm noise and its impacts comprehensively, ensuring 

sustainable development and minimizing adverse effects on human 

health and biodiversity. 
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I. INTRODUCTION

Wind turbines (WT) have become emblematic of the global 
push toward renewable energy, harnessing the power of wind to 
generate electricity with minimal environmental impact. 
However, amidst the whirring blades and rotating turbines, a 
quieter concern has emerged—noise. The noise generated by 
WTs has garnered considerable attention for its impact on human 
well-being, particularly in communities living in close proximity 
to these structures. Chronic annoyance, sleep disturbance, and 
potential mental health effects have been associated with 
exposure to WT noise, prompting concerns and calls for 
mitigation strategies. 

WT noise modelling serves as a valuable research tool [1-3]. 
Its validity relies on long term measurements of WT sound 
power. Measurements are crucial for validating and refining 
modelling predictions, providing empirical data on noise levels 
over extended periods, [4-7]. However, measuring WT sound 
power poses significant challenges due to various factors such as 
the dynamic nature of wind, low-frequency components, 
infrasound, and pseudosound. WTs operate in constantly 
changing wind conditions, resulting in fluctuations in noise 
levels that are difficult to accurately capture. Several papers 
stress the significance of conducting long-term measurements to 
gain insights into WT noise. For instance, a study describes a six-
year deployment of a three-microphone acoustic array, enabling 
continuous recording and analysis of acoustic data, [8]. This 
extensive duration provided a comprehensive dataset for 

studying various acoustic events, including those associated with 
WTs. Another paper discusses five extensive measurement 
campaigns conducted over 13 months at diverse locations, 
facilitating the assessment of WT sound emissions and their 
propagation characteristics over prolonged periods, [9]. 
Furthermore, the importance of long-term measurements is 
highlighted in studies investigating wind farm noise amplitude 
modulation, [10,11]. These investigations, spanning extended 
durations and encompassing variations in day-night cycles and 
diverse wind conditions, offer valuable insights into the temporal 
and spatial dynamics of WT noise. Overall, these findings 
underscore the necessity of sustained monitoring efforts to 
comprehensively understand WT noise dynamics and their 
potential impacts on surrounding communities. Necessary long-
term measurements of WT noise are prone to residual noise 
sources, constant changing wind speeds and its gashes, low 
frequency components of both wind and WT together with 
amplitude modulation characteristics. When measurement 
location is placed outside of urban areas, occurrence of 
biological sound (e.g., bird and insect calling) events is higher. 
Several studies have encountered this problem and tried to 
implement different techniques for better filtration of the residual 
noise sources for the purpose of correct assessment of WT noise, 
[12-14].  

Several studies have noted an abundance of insects in the 
vicinity of wind farms, with research primarily focusing on 
flying insects in relation to bat feeding activity, [15-18]. 
However, the assessment of WT noise has recently highlighted 
the significance of terrestrial insects, particularly concerning 
their calling noises. This presents a challenge in accurately 
evaluating WT noise impacts. To address this issue, researchers 
have employed frequency filtering techniques to exclude insect 
communication noise from WT noise measurements. By 
mathematically removing these frequencies and measuring 
ambient noise during winter when insect presence is minimal, 
researchers aim to isolate and quantify the true impact of WT 
noise, [19-22].  

This paper presents an approach for automatic exclusion of 
insect sounds during WT noise measurements using 
unsupervised and supervised learning and it also explores the 
possible influence of WT noise on insects' acoustics 
communication. 

II. METHODOLOGY

As part of the determination of the sound power of the WT, 
measurements were carried out following the example of the 
Danish regulation, [23]. The primary purpose of the presented 
research described in this article was not to calculate the sound 
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power, but to demonstrate the methodology and approach to the 
filtration of a large number of data/recordings with the aim of 
isolating those where only the noise of the WT is present. Since 
the measurement location was in a rural area, different residual 
noise sources with varying temporal characteristics were present. 
Most of them were sufficiently far away from the measurement 
microphone and did not affect signal-to-noise ratio during the 
WT operation. However, insect noise, especially in the evenings 
and during the nights, exceeded WT noise levels, because of the 
proximity to the measurement microphone of individual 
creatures. To exclude their calling noises, temporal filtration was 
applied based on features extracted from the recordings. 
Measurements were taken 6 continuous days. This represented a 
large dataset that needed automated exclusion of residual noise 
sources.  

A. Wind turbine and measurement location

Subject of measurements was a WT type E-70 with installed
power of 2.3 megawatts from the German manufacturer Enercon. 
The WT has a 97-meter tall tower on which a rotor with a three-
bladed blade with a diameter of 71 meters is mounted. The WT 
was constructed in 2011 and began operating in 2013. The whole 
measurement procedure was carried out based on Danish 
regulations for WT noise assessment.  The placement of the 
measurement point is shown in Fig. 1. The distance between the 
measuring point and the WT is estimated at 134 m ± 5 m. The 
position of the measuring point with respect to the directions of 
the sky was chosen according to the average annual values of 
wind speed and direction for the area where the measurements 
were taken, [24].  

Fig. 1. Measurement location. 

B. Sound level meter and wind sensor

The measurements were conducted using the sound level
meter Norsonic Nor140. Calibration to verify the instrument 
during measurements was conducted at the beginning and end of 
the measurements and at each battery change. The instrument 
operated stably during the measurements, always within 0.1 
dBA, and there was no need to adjust calibration constants. 

For wind speed and wind direction measurements, sensor 
KVT 60A was used, which meets the requirements of the 
National Meteorological Service and is suitable for wind speed 
measurements between 0 m/s and 50 m/s and wind direction 
between 0° and 360°. Its measurement accuracy is +/- 0,5 m/s 
and resolution of 0,1 m/s for wind speed and +/- 2,75 ° and 
resolution of 5,5° for wind direction. We have not received the 
wind speed and direction at the rotor height of the WT from the 
operator. Wind speed and direction measurements were therefore 
carried out at a height of 5.5 m above the ground. Wind speed 
and direction measurements were performed with a time 
resolution of 1 minute, the measurement time was coordinated 

with the time on the sound meter. The meter was placed between 
the microphone and the wind farm. The primary wind screen was 
a commercially available open-cell foam in the form of a sphere, 
mounted on the microphone. Secondary protection from rain was 
used. It was made of polyurethane foam (PU), which has also 
been used and tested by other studies, [25-28].   

C. Audio Database Description

Our study leverages an extensive collection of insect species
sounds from the Xeno canto: Sharing bird sounds from around 
the world, [29], a globally recognized resource for bird and insect 
recordings. As a result, these original audio recordings were used 
to evaluate the class proposed by unsupervised classification that 
represent the audio segments of the insect activity. To ensure a 
representative database, we selected files based on specific 
metadata conditions; a high-quality rate, to ensure the clarity and 
usability of the recordings, and a duration between 20 and 90 
seconds for capturing complete insect vocalizations without 
excessive background noise.  

This selection process allowed us to compile a diverse set of 
recordings, covering a wide array of insect species. These 
recordings, feature a sampling frequency of 44,100 Hz and 24-
bit resolution. These recordings include a mixture of 
vocalizations from multiple species and ambient noises such as 
wind and rain, presenting substantial challenges for sound 
segmentation and classification.  

D. Threshold Detection and Segmentation

Due to the diverse and natural settings of field recordings, the
audio inherently contains a mix of vocalizations from multiple 
species, accompanied by ambient noises such as wind and rain. 
These elements introduce significant challenges for sound 
segmentation and classification, [30]. To effectively isolate 
insect vocalizations, endpoint detection is crucial, enabling the 
extraction of clear, uninterrupted audio segments from the 
original recordings, as shown in Fig. 2.  

Fig. 2. Endpoint detection diagram. 

E. Feature Extraction through STFT Spectrogram

After segmentation, we employ the LabVIEW STFT
Spectrogram function to analyze these 1-second clips. The Short 
Time Fourier Transform (STFT) algorithm, using a Hanning 
window of 128 points, calculates the signal energy distribution 
across the time-frequency domain. This computation yields a 2D 
array that maps the time waveform energy distribution. From 
each time bin, we extract the maximum frequency value, 
simplifying the data into a time-frequency graph of dominant 
frequencies. For insect calls, we found that combining the 95th 
percentile threshold with a zero-crossing method is highly 
effective for endpoint detection. The dominant frequency signal 
is zero-levelled at the 95th percentile, and a unidirectional zero-
crossing is executed. This transforms the signal into a binary 
sequence of zeros and ones, indicating the presence of signal 
peaks when crossing the zero value. An envelope is then created 
over this binary data, and the zero-crossing of the envelope's 0.5 
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value is designated as the start and endpoint of a insect call. This 
method allows us to extract only the insect call from the original 
audio, minimizing other environmental noises and setting the 
stage for precise species classification. 

F. Segmentation Process

Our segmentation process starts with the importation of audio
files from our extensive database. To improve the clarity of 
insect sounds and reduce low-frequency environmental noise 
like traffic and wind, we apply a 6th order band-pass filter to 
remove frequencies below 2000 Hz and above 4000 Hz, [31]. 
Each audio file is then segmented into non-overlapping clips of 
1-second duration, facilitating focused analysis of brief sound
bursts typical of insect vocalizations and aiding the classification
of species-specific songs.

G. Initial Timeframe Parametrization

During the initial phase of our parametrization process, each
audio file is dissected into smaller subparts of 200 ms each. This 
timeframe allows for a high-resolution analysis of the sound's 
temporal dynamics. For each subpart, a Fast Fourier Transform 
(FFT) with a Hanning window and no overlap is performed to 
identify and record the dominant frequency, laying the 
groundwork for extracting detailed frequency characteristics 
representative of specific insect vocalizations. 

H. Secondary Timeframe Parametrization -feature extraction

Following the initial analysis, the data undergo further
parametrization within a larger timeframe of 5000 ms. During 
this phase, two key parameters are derived from the pool of 
dominant frequencies obtained earlier: 

• Mean of Dominant Frequencies: This represents the

average dominant frequency observed over the 5000 ms

period, providing a central tendency measure of the

frequency distribution.

• Coefficient of Variation: It serves as a measure of the

variability relative to the mean, offering insights into the

stability or fluctuation of insect vocalizations within the

given timeframe.
A critical step in our parametrization process involves the 

normalization of the frequency band used. 

I. Implementation of K-Means Clustering

The classification of insect sounds within our dataset was
conducted using the k-means clustering algorithm that  works by 
partitioning the dataset into a predefined number of clusters (k), 
which is determined iteratively. The algorithm assigns each data 
point to the nearest cluster center (centroid), and then 
recalculates the centroids based on the assigned points. This 
process repeats until the centroids stabilize, effectively grouping 
similar data points together based on the features described. 

J. Integrating External Audio Data

To enhance the accuracy of our k-means clustering analysis
shown in Fig. 3, we strategically augmented our dataset with 
selected recordings from the Xeno-canto archive. These 
recordings cover a diverse range of insect species and provide a 
rich base of vocalization patterns. By incorporating these 
additional files, we significantly improve our ability to discern 
and validate the clusters generated by the k-means algorithm that 
represent authentic insect activity. The added recordings serve as 
crucial reference points within our dataset. These are shown as 
distinct dots among the clusters in the analysis graph. Their 
inclusion enables us to confidently associate specific clusters 
with insect vocalizations, ensuring that our classification aligns 
with known patterns of insect sounds. This visualization aids in 
distinguishing between clusters that are consistent across 
different levels of data magnification and those that are not, 
ensuring a robust identification process. 

Fig. 3. K-means clustering result. 

K. Advantages of Unsupervised Learning

Unsupervised learning, particularly through methods like k-
means clustering, is advantageous in ecological studies like ours 
where labeled data can be scarce or unreliable. This approach can 
uncover hidden patterns and structures in the data without the 
need for labeled examples. By analyzing the dataset in this 
manner, the algorithm can autonomously identify clusters that 
likely correspond to different insect species, based on similarities 
in their sound patterns. For instance, as illustrated in Fig. 4, the 
clusters identified as 1, 5, 6, and 7 represent insect activity. 

In our analysis, a critical step involves the separation of 
timestamps where insect activity is present from those where it 
is not. This process effectively splits our original, longer-term 
measurements into two distinct sets of data: those segments 
where insect vocalizations are detected and those devoid of such 
activity. This segmentation lays the foundation for more targeted 
analyses, allowing us to focus specifically on the audio 
characteristics and patterns that signify insect presence. 

Fig. 4. K-means clustering result where classes 1, 5, 6, 7 represent insect activity. 

AKI1.3 - Page 3 of 6

5



III. RESULTS

Data is divided into three groups: a) All measurement data, 
b) Measurement data without insect noise and c) Measurement
data with insect noise. Fig. 5 provides a detailed temporal
analysis of recorded parameters essential to the study, with blue
dots representing datapoints without insect noise and red dots
indicating those with insect noise present. The temporal
distribution of insect calling reveals a predominant occurrence
during nighttime. Despite the presence of WT and wind noise
alongside insect noise in certain datapoints, it's discerned that
insect calling predominantly contributes to the noise profile
during the observation period. It's noteworthy that datapoints
labeled as "without insect noise" may still contain minimal insect
noise; however, the signal-to-noise ratio remains sufficiently
high.

Fig. 5. Measurement data plotted against time: a) Wind direction, b) Wind 

speed, c) SPL and d) WT power 

Furthermore, Fig. 5.d illustrates the wind power output 
during the measurement period, sourced directly from the turbine 
owner/operator with a time constant of 15 minutes. The 
difference in time constants was mended with applying the same 
value of power output for 15 consecutive wind and SPL 
measurements. A correlation between wind speeds and power 
outputs is observed, as expected. However, it's notable that SPL 
exhibits less correlation with wind speed, particularly during 
nighttime observations. This nuanced analysis sheds light on the 
complex relationship between environmental variables and their 
impact on recorded parameters, contributing significantly to the 
broader understanding of the research objectives. 

Fig. 6 depicts a scatter plot illustrating the correlation 
between recorded Sound Pressure Level (SPL) and wind speed. 
The data reveals a notable disparity in the relationship between 
these variables. Observations within the dataset demonstrate 
instances where a wide range of SPL values, such as 55 dBA, are 
recorded across wind speeds spanning from less than 3 m/s to 
nearly 10 m/s. This variance underscores the complexity of 
factors influencing SPL beyond wind speed alone. Particularly 
noteworthy is the observation of higher SPL values in recordings 
featuring insect noise, especially notable at lower wind speeds. 
This suggests a significant influence of insect noise on SPL 
levels, independent of wind speed variations. 

Fig. 6. Scatter plot of SPL and wind speed data for recordings with and 

without insect noise present. 

Fig. 7. Mean SPL values for different wind speed ranges. 

Fig. 7 presents a comparative analysis of SPL values 
averaged within 1 m/s wind speed ranges, aiming to delineate 
differences between data with and without insect noise 
interference. This segmentation of data into discrete wind speed 
ranges provides a clearer insight into the influence of wind 
dynamics on SPL variations, particularly in the presence of 
insect noise. Notably, the analysis highlights that as wind speed 
decreases, the mean SPL difference between recordings with and 
without insect noise intensifies, underscoring the significant 
impact of low wind speeds on acoustic environments. It must be 
stated that recordings featuring insect noise also encompass 
contributions from other concurrent noise sources, 
predominantly WT and wind noise. 

Fig. 8. Mean SPL values for different WT output power ranges. 

Fig. 8 illustrates the relationship between power production 
and SPL variances. Lower power production (corresponding to 
lower wind speeds) magnifies SPL differences. Conversely, at 
higher wind speeds and power outputs, WT and wind noise 
increase, masking insect noise. The standard deviation generally 
decreases at higher wind speeds. However, differing time 
resolutions between power data (15 minutes) and wind/SPL data 
(1 minute) introduced additional data noise. 
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Fig. 9. Measurement data plotted against time: a) Wind direction, b) Wind 

speed and c) SPL. 

Fig. 9 provides an in-depth examination of residual noise 
sources. Specifically, measurement data during periods when the 
WT was non-operational was analyzed. This investigation 
primarily encompassed data from approximately the last three 
days of the measurement period. During this time frame, 
prevailing winds predominantly blew from the southeast to the 
northwest, corresponding to a direction of approximately 225°. 
An examination of the data reveals some correlation between 
SPL and wind direction. A notable instance occurs between 6:00 
and 12:00 on September 12th, where despite an increase in wind 
speed, the SPL remains relatively constant, while the wind 
direction undergoes change. Fig. 10 shows the scattering of the 
SPL data, whereby a greater scattering is particularly noticeable 
in recordings with insect noise. It is noteworthy that the WTs are 
only put into operation at wind speeds of over 2.5 m/s. 

Fig. 10. Scatter plot of SPL and wind speed data for recordings with and 

without insect noise present filtered by non-operation of WT. 

Fig. 11 provides a detailed examination of the relationship 
between SPL and wind speed and direction. To facilitate 
analysis, the data was grouped into bins of 15° and 0.5 m/s width. 
SPL exhibits a notable dependence on wind speed, particularly 
in relation to WT operation. In Fig. 11.a, this relationship is clear. 
Unfortunately, winds faster than 4.0 m/s only blew in directions 
between 240° and 315°, preventing any analysis of WT noise 
directionality. Nevertheless, analysis of recordings with insect 
noise present unveils intriguing dependencies of SPL on wind 
direction. Notably, when the WT was inactive (wind speed 
below 2.5 m/s), SPL exhibited variations based on wind 
direction. Specifically, higher SPL values were observed when 
the wind blew from east directions compared to west directions, 
with mean SPL differences exceeding 10 dBA. 

Fig. 11. Mean SPL plotted against wind speed and wind direction for data: 

a) Without insect noise and b) With insect noise.

Fig. 12 presents data filtered by the non-operation of the WT. 
Despite the reduced dataset, distinct differences between wind 
directions are clearly discernible. Notably, higher SPL values 
from northeast directions (225° to 255°) raise suspicion of 
potential highway noise influence. This conjecture is supported 
by Fig. 13, which illustrates the proximity of the highway, 
located 1.6 km away from the WT. 

Fig. 12. Mean SPL plotted against wind speed and wind direction when WT 

was not operating for data: a) Without insect noise and b) With insect noise. 

Fig. 13. Location of highway and WT. 
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IV. CONCLUSIONS

Long-term measurements are crucial for accurately assessing 
WT noise, particularly in the presence of significant residual 
noise sources such as insect sounds. Our study highlights that 
insect noise, especially during nocturnal hours, poses a major 
challenge in characterizing WT sound power. Insect calls, 
dominant in our measurements, notably influence SPLat lower 
wind speeds. Prolonged observations are necessary to discern 
patterns, especially concerning wind direction's impact on SPL. 
Residual noise sources, including highway traffic, further 
complicate WT noise assessments. Manual data selection for WT 
noise assessment is time-consuming. Therefore, innovative 
methods are essential to filter out residual noise sources, both 
anthropogenic and biological. Future research should focus on 
developing customized measurement equipment and advanced 
signal processing techniques. These innovations will enhance the 
accuracy and efficiency of WT noise assessments and provide a 
clearer understanding of their impacts on biodiversity and human 
health. 
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