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Abstract—Breathing is one of the vital functions of a human.
This is why the monitoring of breathing represents an important
tool for diagnosing a medical condition in a patient, that is, for
assessing health status. Apart from medical diagnostics, breath
monitoring can be used for other purposes such as managing stress,
optimizing sports performance, security applications, or human-
computer interaction. Breath detection employs diverse sensors
and approaches. The initial step in this process involves acquiring
breath sound. This paper explores the potential for acquiring
breath sound using several types of microphones in different
environments. To this end, four microphones of varying types
(digital MEMS, electret, studio condenser, and smartphone
microphone) are utilized. Acquisition is conducted in two distinct
environments or scenarios: with the microphone in the air in close
proximity to the nose and mouth, and with the microphone in a
military gas mask. The recorded signals are subsequently analyzed
in both the time and spectral domains.

Keywords—breath sound acquisition, MEMS microphone,
condenser microphone, sound source vicinity, audio analytics

I. INTRODUCTION

The breath pattern contains important information about a
person's medical health and reflects the current condition of the
human body during various activities, including physical
exercises, or in specific situations such as wearing a military gas
mask. Thus, the respiratory system's health, as well as the health
of other organs like the heart can be indicated by breathing
characteristics (both inhalation and exhalation).

Shortness of breath, known as dyspnea, is a prevalent
indication in various acute and chronic medical situations.
Immediate breathlessness can manifest during an asthma or heart
attack, while persistent breathlessness often signals chronic
obstructive pulmonary disease, low cardiovascular fitness and
congestive heart failure [1]. Experiencing breathlessness during
exertion also serves as an independent predictor of mortality and
is a frequently utilized clinical measure to evaluate and track the
progression of diseases. Establishing a systematic approach to
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identify breathlessness could alleviate the challenges associated
with recognizing this symptom, potentially offering healthcare
professionals early insights into patients' medical conditions well
before any signs of disease progression become apparent in a
clinical environment [1].

For the most precise estimations of breathing patterns,
commonly used sensors include thermistors, respiratory gauge
transducers, and acoustic sensors. However, they are sometimes
referred to as intrusive due to the discomfort they may cause in
daily use [1]. Viewed from a different perspective, the
predominant method for consistently monitoring respiratory
patterns involves using sensors in direct contact with the face of
the body [2]. However, a minority of systems can monitor
respiration without necessitating contact between the sensors and
the body. The use of wearable or specialized non-contact devices
for respiratory monitoring has not gained widespread adoption,
rendering it impractical for comprehensive coverage across the
entire population. Moreover, it is unsuitable for long-term health
monitoring for all patients at risk.

The use of sound and signal processing in respiratory
analysis is not a recent development. The analysis and
classification of breath sounds through signal processing have
been ongoing for several decades. Over time, various methods
for analyzing breath sounds have been proposed. The recent
surge in the performance and popularity of artificial intelligence
(AI) has resulted in Al-based approaches for identifying
respiratory events. In this context, commonly employed
techniques with proven efficacy include the use of k-nearest
neighbor (k-NN), naive Bayes, support vector machines (SVM),
random forest, deep neural networks (DNN), and hidden Markov
models (HMM) [3].

The primary motivation behind our work has been to develop
a simpler and more widely applicable solution for acquiring
breath data as well as identifying breat pattern components.
Through our approach of exploring different options for
acquiring breath sound, the goal is to investigate the differences
of breat patterns captured in diverse scenarios. Looking from a
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general perspective, the aim is to achieve competitive results in
breath acquisition and subsequently in breath pattern monitoring.
The findings in this study hold significant practical utility for
further analysis in similarly focused research endeavors.

We have collected audio samples of breathing in two
conditions—forced and normal (relaxed) breathing—from both
male and female volunteers of varying ages and breathing
tendencies. The samples were recorded using four different types
of microphones, including a digital MEMS microphone, as well
as studio, electret, and smartphone microphones. The collected
audio samples are analyzed, focusing on differences between
breathing patterns.

The paper is organized as follows: methods for breath
acquisition, monitoring and detection are first reviewed in
Section II. Then, the methodology used in this paper for breath
acquisition and analysis is described in Section III. The results
and discussion thereof are provided in Section IV, while the final
thoughts and conclusions are presented in Section V.

II. BREATH MONITORING AND DETECTION

A. Review of Approaches for Non-Sound Breath Monitoring

Different scenarios for respiratory monitoring present
distinct challenges and limitations. In sporting scenarios, various
technical challenges, such as those introduced by motion
artifacts, need careful consideration to select an appropriate
approach for signal acquisition and processing [4]. Conversely,
medical scenarios pose their own challenges and come with
specific requirements.

Respiratory activity sensing can be classified into three broad
categories: a) built-in motion sensors (IMU)-based breath
activity detection, b) chest displacement sensing for breath
pattern estimation, and c) acoustic-based (audio-based) breath
monitoring [5]. According to another criterion, a variety of
sensors used for breath monitoring can be categorized into two
groups: contact and contactless sensors [1].

The measurement of respiration rate has relied on devices
like respiratory belts or impedance pneumography, which,
however, tend to be both costly and impractical for non-clinical
applications [5]. A commonly employed contact-based approach
involves capturing chest wall movements induced by respiration
using devices such as strain sensors embedded in straps or
garments [4]. In the field of sports and exercise, there is a
growing interest in a different method, which centers on
extracting breath patterns (respiratory frequency) from cardiac
signals recorded by devices commonly used by athletes and
exercise practitioners [4].

In more recent times, research has indicated the viability of
gauging respiration rate in non-clinical environments through the
utilization of consumer devices. Thus, a wireless earphone
equipped with the IMU sensors is employed to track breath rate,
and the IMU sensors built-in commercial earbuds are applied to
monitor respiration rate during physical activities [5]. In an
approach presented in [2], the movement of the thorax following
emission of ultrasonic waves by a microphone built into a
smartphone is monitored. Due to the utilization of ultrasonic
irradiation, it is necessary to position the smartphone in front of
the chest, rendering it impractical for individuals resting on a bed
with a dense covering. Image information has been utilized to
ascertain respiratory rate by placing a finger on the integrated

camera of a smartphone, and thoracic movement has been
detected by a conventional smartphone positioned on an
individual's chest [2].

B. Sound-Based Breath Monitoring

Previous research on sound-based or audio-based breath
detection has concentrated on identifying and categorizing
specific breath sounds by utilizing breath characteristics to
differentiate, for example, between normal and abnormal breath
sounds [3,6]. In real-world scenarios, employing audio sensing
may demand significant resources and raise privacy concerns
[5]. Within these audio-based methods, both contact and
contactless approaches can be discerned. An example of the
former is the estimation of respiratory rate using contact-based
sensors for tracheal sounds [7]. In this context, breath sounds are
captured by a tracheal microphone [3], representing an invasive
method that may cause discomfort to the user.

Regarding contactless audio-based methods, they primarily
involve estimating the respiratory pattern using recorded
respiratory sounds captured by a microphone or microphones,
such as those in smartphones used for acquiring nasal breath
recordings [8]. These methods typically belong to a non-invasive
ones having an advantage of an easy realisation, but also
drawback that they are more sensitive to external noises. Besides,
microphone sensors are considered to be less prone to motion
artifacts than other sensors such as strain sensors [4].

A built-in microphone in a smartphone attached to the bed
headboards is also employed for detecting respiratory sounds
based on deep learning technology [2]. In this approach, the
subtle sounds of breathing recorded by a smartphone are
syncronized with respiratory information obtained by the
polysomnography examination. The smartphones' microphones
are situated around 50 cm away from the patient's nose. Another
method for determining real-time detection of breathing phases
involves placing a smartphone's built-in microphone near the
mouth and the nose of a patient [9]. However, this approach,
while avoiding patient discomfort, is not well-suited for
prolonged and continuous monitoring over the long term.

In some studies, other types of microphones are applied
including contactless wearable near-field microphones used for
respiratory rate estimation from short audio segments obtained
after physical exertion in healthy adults [1]. In such a model-
driven approach, it is critical to determine if such a sensor is
capable of providing the audio data with sufficient information
to distinguish the breath sound patterns. Use of earphones as a
microphone for breath sound detection has also been explored in
[8]. This approach is anticipated to enhance performance in
situations where breath sounds are subtle and challenging to
discern. Implementing this method would necessitate the
evaluation of each earphone's performance.

A single highly directional microphone affixed to an
articulated microphone stand oriented toward the subject’s head
placed at an approximate distance of 22 cm is used in [10] to
capture high-quality audio. A cardioid pattern capacitor
microphone with 32 dB of sensitivity is utilized for real-time
detection and identification of respiratory movements,
encompassing both mouth and nasal inspiration and expiration
[3]. In the investigation outlined in [11], an acoustic sensor is
employed in proximity to the mouth to monitor respiration while
asleep. A Matlab application based on a microphone is
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developed in [3] for identifying respiratory movements -
inspiration and expiration - in real-time.

In [4], a facemask (made of 3D-printed thermoplastic
polyurethane) incorporates a condenser microphone to estimate
respiratory frequency from breath sounds during walking and
running. This estimation in the time domain involves
determining the time elapsed between consecutive exhalation
events extracted from breathing sounds at 30-second intervals.
Microphones embedded in facemasks are also utilized for
estimation of respiratory frequency in both indoor (office) and
outdoor (public street, public bus, and subway) settings [12].

There are studies for breath monitoring and analysis where
the sound generated by breathing is collected by multiple
microphones. An example of such a scenario can be found in [13]
where the respiratory sound is acquired by multiple microphones
installed near patient’s beds. On the other hand, employing
microphone arrays and beamforming techniques allows for the
concentration on the breath signal while minimizing interference
from surrounding ambient noise.

One more example of using respiratory sounds is related to
identifying the respiratory phases by the sounds acquired by a
trained physician in performing lung auscultation by placing a
phonendoscope Littmann 3200 at patient’s jugulum [14].

III. BREATH SOUND ACQUISITION IN THIS STUDY

Several sound sensors (microphones) were used here to
acquire breath sounds in two environments (scenarios): the
sensor placed in the air close to the nose and mouth of a subject
(at an approximate distance of a couple of centimeters), and
inside a standard military gas mask (also in the proximity of the
nose and mouth, in the area between them), as depicted in Fig. 1.
The sound in the first environment (referred to here as 'air') was
recorded by four microphones: a digital MEMS microphone
(Infineon Xensiv MEMS microphone connected to the Audiohub
Nano board), a studio microphone (AKG 120 Perception
connected to the Focusrite Scarlett audio interface), an electret
microphone (connected to a custom-made microphone amplifier
and the same Focusrite Scarlett interface), and the microphone
of a smartphone (Samsung Galaxy A7-2018).

The sound acquisition in the second environment (referred to
here as the 'gas mask') was conducted using only the digital
MEMS microphone mentioned above. The microphone's
position within the gas mask was selected to optimize the capture
of respiratory activity while minimizing the influence of
surrounding noise, as illustrated in Fig. 2.

Audio samples collected in the air have a duration of several
tens of seconds and contain sounds of two types of breathing:
forced (characterized by pronounced inhales and exhales) and
normal (relaxed, i.e., natural) breathing. Audio samples collected
in the gas mask last for a minute and contain only sounds of
normal breathing. All audio samples were recorded with a
sampling frequency of 44.1 kHz and stored in WAV format.

The collected audio signals are first subjected to analysis in
the time domain to investigate their waveforms, followed by
analysis in the spectral and spectrogram domains. Through these
steps, the main characteristics of nose and mouth breathing, as
well as inhalation and exhalation, are observed and discussed.
Certain differences caused by variations in microphones,
environments, and subjects are also identified and presented.

Studio
microphone

i MEMS
i microphone

Electret
microphone

MEMS
i microphone

Fig. 1. Breath sound acquisition in air - in the vicinity of nose and mouth (top
figure) and in military gas mask (bottom figure)

Fig. 2. MEMS microphone board atteched to the gas mask (left figure), where
microphone is inserted in the mask interior (right figure)

IV. BRATH SOUND CHARACTERISTICS

This section outlines key characteristics of breath sounds
across three domains: time, spectral, and spectrogram. Initially,
all recorded sounds undergo preprocessing to extract typical
breathing patterns, including several inhalations and exhalations.
Subsequently, these extracted patterns are visualized within the
mentioned domains and analyzed to identify significant
characteristics associated with specific breathing organs (nose or
mouth), breathing phases (inhalation or exhalation), subjects,
recording environments, and acoustic sensors.

Tllustrations of typical patterns of breathing sounds in the
time (waveform), spectral, and spectrogram domains are
provided in Figs. 3, 4, and 5, respectively. These sounds were
recorded in air using the studio microphone. In Fig. 3, the
waveforms of inhalation and exhalation demonstrate distinct
properties. Among them, the most notable difference between
inhalation and exhalation lies in the amplitude values, with
significantly larger values observed during the exhalation phase.
Additionally, the duration and shape of the rise and decay
portions typically differ between these two breathing phases. For
instance, in several cases, the decay is prolonged during
exhalation.

The spectra of individual inhalations and exhalations of the
sound presented in Fig. 3 are depicted in Fig. 4. Notably, there is

AKIL.6 - Page 3 of 6



a clear mutual similarity between the spectra of two inhalations,
as well as between two exhalations. When comparing the spectra
of inhalation and exhalation, distinct differences emerge,
particularly at lower frequencies, up to 500 Hz. In this frequency
range, the shapes of the spectral curves differ, with significantly
higher levels observed in exhalation spectra compared to
inhalation spectra. However, the disparity between inhalation
and exhalation diminishes notably at higher frequencies,
especially above 1 kHz. It is noteworthy that characteristic peaks
and dips are present in both inhalation and exhalation spectra.
Moreover, in contrast to the trend observed at lower frequencies,
the levels found in exhalation spectra are somewhat smaller than
those in inhalation spectra at higher frequencies.
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Fig. 3. Waveforms of inhalation and exhalation in breathing through mouth
recorded in air by means of studio microphone
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Fig. 4. Spectra of individual inhalations and exhalations in breathing through
mouth recorded in air by means of studio microphone

The spectrograms as 3D plots, depicted in Fig. 5, illustrate
the identified characteristics in both the time and frequency
domains. Furthermore, specific features such as changes in the
level of particular frequency components along the time axis can
be observed within these spectrograms.

The comparison of spectra from a single inhalation and
exhalation of a particular subject, extracted from sounds
recorded in both environments (air and gas mask) using various
microphones, is shown in Fig. 6. Notably, there are some
consistent global trends evident separately for inhalation and
exhalation across all breathing sounds recorded by different
microphones in air. In this environment, the levels remain
relatively constant at frequencies up to 1 kHz for inhalation, with
a subsequent decrease in levels observed above this frequency.
Somewhat different spectral shapes are observed in the breathing

17

sounds recorded by the smartphone microphone, characterized
by a visible roll-off from several hundred hertz towards lower
frequencies. Another trend is characterized by significantly
higher levels in exhalation below 500 Hz, or even 1 kHz,
compared to inhalation during breathing in air. When comparing
spectra recorded in air and through the mask, the most notable
difference lies in the higher levels found in the mask, particularly
during inhalation. This increase in levels is also observable
during exhalation, albeit primarily at the lowest frequencies,
mainly below 50 Hz.
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Fig. 5. Spectrogram of a single a) inhalation and b) exhalation in breathing
through mouth recorded in air by means of studio microphone

The effects of both the acoustic sensor (microphone) and
breathing phase (inhalation and exhalation) are evident in Fig. 7.
In this regard, there is an influence from the microphone's
frequency characteristics, as well as its physical attributes such
as size, membrane position, and housing. The previously
mentioned roll-off for the smartphone microphone is also notable
here in both breathing phases, see Fig. 7.d). When comparing
spectra for inhalation and exhalation, regardless of the
microphone used, exhalation exhibits higher levels at lower
frequencies, while the trend reverses at higher frequencies. The
frequency at which this trend changes is in the range 1-3 kHz.

Each individual (subject) also contributes to the spectral
characteristics of the breathing sound. An illustration of such
contributions is provided in Fig. 8, which presents spectra of a
single inhalation and exhalation for three subjects recorded in the
air. The variations in levels among subjects at particular
frequencies are significant, ranging as high as several tens of
decibels. The largest differences are observed at low frequencies,
up to several hundred hertz, while the smallest variances appear
at higher frequencies for nasal breathing, see Fig. 8.b).
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Fig. 7. Spectra of a single inhalation and exhalation through mouth of a single
subject recorded in air by different microphones

All previous results for breathing in the air are derived from
forced breathing, as its characteristics are more pronounced. Fig.
9 illustrates the distinctions between forced and normal
breathing. In this specific case, the spectra for mouth breathing
are very similar, whereas the disparities between forced and
normal breathing are more noticeable during nasal breathing.
Furthermore, in the latter scenario, the discrepancies between
inhalation and exhalation are smaller during normal breathing
compared to forced breathing. The described trends are highly
subject-dependent; in some subjects, the differences between
forced and normal breathing may be even more pronounced.

Fig. 8. Spectra of a single inhalation and exhalation through a) mouth and b)
nose for three subjects (S1, S2 and S3) recorded in air by MEMS microphone
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Fig. 9. Spectra of a single forced (F) and normal (N) inhalation and
exhalation through a) mouth and b) nose for one subject (S1) recorded in air
by studio microphone
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Fig. 10. Sound of forced breathing in air acquired by a) and b) MEMS
microphone,and ¢) and d) smartphone microphone

Waveforms together with spectrograms of inhalation-
exhalation pattern for a single subject recorded by two
microphones are shown in Fig. 10. The presented waveforms for
these two microphones are rather different considering elements
sush as shape of inhalation-exhalation pattern, rise and decay.
The shown spectrograms also differ, and some of the previously
noticed trends are also visible — higher values for exhalation at
lower frequencies and opposite situation at higher frequencies
especially for the smartphone microphone, see Fig. 10.d).

V. CONCLUSIONS

This research analyzes various methods of acquiring
breathing sounds, but also characterizing and visualizing
distinctive properties of breathing patterns. Certain limitations of
the current approach stem from a small sample size, which will
be addressed in the near future by expanding the dataset of breath
sounds. Employing multiple methods of breath acquisition,
along with different breathing phases and modalities, has
highlighted significant differences that environmental factors
introduce into the process of breath acquisition and detection.

Significant differences in the characteristics of breathing
phases (inhalation and exhalation) are identified across all three
applied domains: time, frequency, and spectrogram. These
differences encompass variations in breathing patterns in the
time domain and the shapes of spectral characteristics in the
frequency domain. Depending on the environment and
acquisition sensor, breathing sounds exhibit specific features that
enable clear distinctions between inhalation and exhalation, as
well as between breathing through the mouth and nose. This
study provides valuable insights into the utilization of different
technologies and principles of breath acquisition and processing
for further research. Despite the limited scope of the amassed
data, it holds significant promise for informing the development
of a systematic framework for automating the process of breath
acquisition and its precise evaluation.
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