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Abstract— ECG measurements at rest are susceptible to 

different kinds of noise which may affect clinical interpretation. 

Unlike the low-frequency body movements or spectrally well-

defined power line interference, the broadband electromyographic 

(EMG) noise spectrally coincides with the QRS complex, which 

makes its removal particularly challenging. While a number of 

algorithms have been developed, their evaluation and comparison 

have long remained challenging due to the lack of a database with 

EMG-contaminated and genuine noise-free signals. We have 

recently published a SimEMG database of the simultaneously 

recorded EMG-noise-free and -contaminated ECG signals. In this 

paper, we examine the capability of SimEMG to become a 

reference test set for different denoising algorithms. We show that 

the SimEMG is useful for the assessment of the signal morphology 

distortions leading to potentially misleading changes in the 

diagnostic markers. We examine the ST segment – a marker of 

acute myocardial infarction, and R, Pmax, and Tmax points– the 

markers of arrhythmias. The tests are performed with the adaptive 

wavelet Wiener filter, wavelet transform (WT), finite impulse 

response (FIR) filter, and iterative regenerative method (IRM). 

The analysis also reveals the residual noise as a minor limitation of 

the database and acquisition method. Possible improvements are 

discussed. 

Keywords— ECG acquisition; electromyographic noise; 

denoising. 

I. INTRODUCTION

ECG signals measured by mobile devices are frequently 

contaminated by noises of different origins and spectral 

characteristics, which makes their removal very challenging [1, 

2]. Typical noises are the low-frequency (<1 Hz) baseline 

wander (BLW), power-line interference (PLI) – a narrowband 

(50/60 Hz) component, motion artifacts (MA) with a spectrum 

in the range [1–10] Hz, and electromyographic (EMG) noise 

with the broad spectrum spreading above 10 Hz. While the 

BLW and PLI can be relatively easily filtered out, MA and EMG 

significantly overlap with the frequency content of the 

diagnostically relevant information stored in the QRS complex. 

Particularly challenging is the removal of EMG noise as the 

underlying muscle movements are involuntary and cannot be 

stabilized by measuring at rest as MAs can. Consequently, 

several denoising algorithms have been applied in 

postprocessing, which often results in changes to the signal 

morphology, diminishing the accuracy of the ECG-feature 

based diagnostics [1, 3].  

However, due to the conundrum of the noiseless signal 

measurement: “The fact that the true underlying dynamics of a 

real ECG can never be known implies that one cannot 

distinguish between the clean ECG signal and the many sources 

of noise that can occur during recording” [4], it is difficult to 

evaluate the performance of and select an optimum denoising 

algorithm. The data sets used for algorithm evaluation are 

typically constructed from the ‘noise-free’ ECGs selected 

among the cleanest signals from a given public database or 

synthesized, and a noise taken from a public database, such as 

the MIT noise stress test database, or produced by filtering a 

white Gaussian noise to match the EMG noise [5], [6], [7]. 

We have recently published SimEMG, a database of genuine 

noise-free and EMG-noise-contaminated signals 

simultaneously recorded by a novel measurement scheme [8]. 

In this paper, we present the possibilities for its use in the 

assessment of different denoising algorithms, namely adaptive 

wavelet Wiener filter (AWWF) [7], wavelet transform (WT) 
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[8], finite impulse response (FIR) [9] and iterative regenerative 

method (IRM) [10]. The comparison is focused on the 

investigation of distortion of the diagnostically relevant 

features: ST elevation – the marker of myocardial infarction 

(MI), R-point – the indispensable feature in the assessment of 

arrhythmias [11], P wave – significant in detection of atrial 

fibrillation [12] and T wave – associated with life-threatening 

arrhythmias [13] and MI (Fig. 1). Finally, we discuss the 

limitations of the measurement scheme and propose directions 

for its further development and use. 

 

 
Fig. 1. Components of a single heartbeat. 

 

II. THE METHOD 

A. SimEMG database 

A detailed description of the SimEMG acquisition method is 

given in [14]. Here, we briefly review its main assumptions that 

(i) the arm shortcuts any two potential points along it and, hence, 

that the potential at every point along the arm is constant when 

muscles are relaxed [15] and (ii) the EMG generated in hands, 

in particular fingers, dominates the EMG noise generated at a 

proximal position on the arm. Hence, the ECG measurement 

performed with finger electrodes yields noisy signals, while the 

measurement performed with the electrodes placed near the 

shoulders yields a signal with a near-zero EMG noise. The 

corresponding ECG signals are recorded using the limb leads in 

the standard configuration and the following precordial 

electrode configuration: V1-V2 electrodes on the shoulders to 

obtain the reference (noise-free) signal, V3-V4, and V5-V6 

pairs on the intermediate and proximal parts of fingers of the left 

and right arms, respectively. Therefore, we can obtain 4 single-

lead signals per recording: one reference and three EMG-noise-

contaminated signals. EMG noise was introduced by activating 

hand muscles either by pressing the fingers of one hand against 

each other or by pressing the object that causes resistance. To 

additionally vary the level of EMG noise, we recorded the ECG 

of healthy subjects in the supine position with arms in three 

different postures: resting along the body for low noise levels, 

the forearms leaning on the hips at the approximate 45-degree 

angle relative to the bed, and the arms pointing upright, with 

elbows supported on the bed next to the body.  

In order to obtain reference signals with good quality, the 

signals that do not fulfill signal quality criteria are rejected from 

further analysis [14].   

The database is summarized in Table I. The level of noise is 

quantified as the signal-to-noise ratio (SNR) using the standard 

definition [10].  

This work was approved by the Human Research Ethics 

Committee of the Institute for Cardiovascular Diseases Dedinje, 

Serbia. 
TABLE I 

SIMECG DATABASE SUMMARY  

Description Parameter Value 

Demography Number of subjects 14 

Female 9 

Male 5 

Age 40 ± 13 

Signals Total number 147 

Noise-free 37 

With EMG noise 110 

Signal 

distribution 

according to 

the SNR 

SNR [dB] Number of signals 

<4 33 

4-8 19 

8-12 23 

12-16 28 

16-20 6 

>20 1 

 

B. Denoising methods 

The IRM method removed the EMG noise in a number of 

iterations determined by the initially estimated level of noise. 

The main idea behind the method is to temporarily remove the 

main features of the signal, notably the QRS complex, as well 

as the low-frequency components, upon which the EMG noise 

is easily extracted and eliminated. The main feature removal is 

achieved by ensemble averaging. Upon the noise removal, the 

signal is reassembled, thus restoring its morphology and 

relevant features [10].  

The AWWF method utilizes the dyadic stationary wavelet 

transform within a Wiener filter framework. It enhances signal 

quality by incorporating a noise estimation block to track the 

signal's time-dependent SNR. Moreover, it incorporates an 

algorithm to optimize parameter values, maximizing the 

average improvement in SNR [7].  

WT, a conventional method for ECG signal filtering, was 

applied following the procedure in [8]. Furthermore, parameter 

optimization (wavelet family, lower and higher thresholds) was 

conducted using the SimEMG dataset, resulting in the 

utilization of sym4 filter banks, a decomposition level of 5, and 

hard thresholding for managing cD3 and cD4 coefficients. 

For completeness, we applied the conventional FIR filter in 

the form of a low-pass Butterworth filter with a cutoff frequency 

set at 40 Hz [9]. 

The complete numerical analysis was performed in 

MATLAB, Math Works Inc. 

C. Performance metric 

The signal quality upon the EMG noise removal was assessed 

using the SNR improvement factor (SNRIMP) defined as: 

 

INOUTIMP SNRSNRSNR −= ,  (1) 

 

where SNROUT/IN are the SNR of the output and input signals 

defined on an interval (here, ST segment) or the whole signal. 
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The preservation of the amplitudes of the fiducial points, 

namely the peaks of the QRS complex (R point), P (Pmax) and T 

(Tmax) waves, and J point, was assessed by calculating Pearson 

coefficients at these points defined by the crosscorrelation:  

 


=








 −







 −

−
=

N

i B

Bi

A

Ai AA

N
BA

11

1
100),(








 (2) 

 

where Ai and Bi are the amplitudes of fiducial points of the 

denoised and recorded noise-free signal, respectively, while 

µA/B and σA/B are their respective mean and standard deviations 

on the whole signal. Fiducial points were determined by a 

human reader and verified by a cardiologist.  

Finally, as the general morphology-preservation check, we 

use the eq. (2) with A and B being the denoised and noise-free 

signal amplitudes at all samples and µA/B and σA/B their 

respective mean and standard deviations to evaluate the cross-

correlation of the whole signal amplitudes (xcorr). 

III. MAIN RESULTS 

Figure 2 shows examples of typical signals from the 

SimEMG database contaminated at different levels of noise. 

The noise is estimated as the difference between the noisy and 

noise-free recorded signals. The corresponding SNRIN is used to 

stratify the data set according to the noise level. The spectral 

analysis of the data set confirms that the EMG noise above 10 

Hz dominates other noises.  

While in [10], we use SimEMG to investigate SNR 

improvement (SNRIMP) over the whole signal, here, we 

concentrate on the SNR improvement on the ST interval, 

defined relative to the J point (from J to J+60 ms) [16]. In 

healthy people, the ECG signal on the ST segment is 

isoelectrical, i.e., it has near-zero values. Its elevation in either 

a positive or negative direction is a typical marker of MI and has 

tremendous significance in detecting acute MI in emergency 

units. Due to the small amplitudes, the ST segment is 

susceptible to distortions induced by the filtering operations, 

which can result in unnecessary referrals to emergency or, 

worse, in false negative MI. 
 

TABLE II 

AVERAGE VALUES OF SNRIMP ON THE WHOLE SIGNAL AND ST SEGMENT 

OBTAINED BY DIFFERENT DENOISING METHODS. ANALYSED ARE THE SIGNALS 

IN DIFFERENT INPUT SNR RANGES AND THE WHOLE SET 

SNRin 

[dB]  
N 

IRM  

 [dB] 

AWWF 

[dB] 

WT   

[dB] 

FIR 

[dB] 

  All ST All ST All ST All ST 

<4 33 12.4 8.3 11.1 6.3 6.5 0.9 6.1 -0.2 

4-8 19 16.1 11.3 14.6 8.4 9.9 3.9 9.9 3.2 

8-12 23 17.1 12.0 16.3 10.4 12.2 6.6 13.2 6.9 

12-16 28 19.5 14.2 18.8 12.7 12.9 8.4 16.4 10.5 

16-20 6 21.0 15.4 20.7 14.6 15.1 8.1 18.9 13.5 

>20 1 22.5 13.9 23.2 14.0 13.9 2.3 21.4 13.3 

total 110 16.4 11.5 15.4 9.7 10.5 4.9 11.7 5.5 

The best results on whole signal or ST level are shown bolded. 

In Table II, we compare the denoising algorithms (IRM, 

AWWF, WT, and FIR) on the SimEMG database to determine 

the filter performance on this segment. Regardless of the 

method, the SNRIMP evaluated on ST is significantly lower than 

on the whole signal, thus confirming the sensitivity of this 

segment to filtering. The IRM achieves the strongest noise 

reduction on all signals, especially on the ST segment, except 

the low-noise (SNR > 20 dB) signals. Standard filtering method 

FIR can even increase the noise content when applied to signals 

with SNR < 4 dB). WT is more reliable than FIR, but not at the 

level of AWWF and IRM. We note that also other metrics, such 

as RMSE, normalized RMSE, or noise reduction factor, can be 

used for the assessment of filtering methods [10]. A comparison 

between IRM and WT methods is shown in Fig. 3. 

 

 
 

Fig. 2. Examples of EMG-contaminated and noise-free signals with different 

SNRIN: a) 0.3 dB, b) 6.2 dB, c) 11 dB, d) 14.5 dB, e) 18.2 dB. Displayed signals 

are from different subjects. 
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Fiducial points marking the P-wave, QRS-complex, and T-wave 

maxima and their temporal positions, are customarily used in 

the detection of arrhythmias. J point marks the end of 

depolarization and the beginning of repolarization and is used 

to define the ST segment. Therefore, it is important that the 

noise removal procedure minimally distorts the signal 

morphology in the vicinity of these extrema. 

 

 

 
Fig. 3. An example of a) reference (noise-free) signal, b) IRM-filtered signal 

and c) signal filtered with the WT methods. A signal contaminated with EMG 

noise is displayed as gray. 

 

The SimEMG database enables evaluation of the denoising 

algorithms in this aspect by providing noise-free signals with 

clean ECG segments and clear fiducial points. Fig. 4 illustrates 

comparison of denoising techniques with the Pearson 

coefficients of the signal amplitudes at Pmax, R, J, and Tmax 

points as a metric. For this analysis, all fiducial points from all 

signals were annotated by a biomedical engineer. 

The global crosscorrelation evaluated on the whole signal 

shows excellent morphology preservation by all methods. This 

is also true for the R point, while at the Tmax point, the Pearson 

of WT and FIR filters falls below 90%. Pearson coefficient at 

Pmax and J points remains around 80% only for the IRM method, 

just above 70% for AWWF, while for the WT and FIR methods, 

it falls below 60%. The assessment shows that the global 

crosscorrelation is a good indicator of the segments with higher 

amplitudes (R and Tmax points), which can be explained by their 

greater weight in the global crosscorrelation. Importantly, the 

morphology preservation of the diagnostically relevant 

segments with lower amplitudes must be assessed separately to 

ascertain the fair comparison of different methods.  

 

 
Fig. 4. Pearson coefficients for amplitudes of noise-free and denoised signals at 

fiducial points evaluated by the IRM (blue line), AWWF (red line), WT (green 

line), FIR (purple line) methods. Xcorr is the crosscorrelation between these 

signals calculated on the whole signal. The black line shows an example 

heartbeat to illustrate the positions of fiducial points. 

 

IV. CONCLUSION 

The open-source SimEMG database recorded using this 

principle is a unique dataset with genuine noise-free and noisy 

ECG signals. Here, we have shown that it is suitable for 

comparison of the denoising techniques in terms of signal 

morphology preservation. In doing this, particular attention 

must be paid to a fair assessment of the individual diagnostic 

features, which do not have large weight in the global metrics, 

such as Pmax and J points, and the ST interval. The reference 

signals in the SimEMG database contain a low level of residual 

noise. As a further improvement of the acquisition technique, 

towards the noiseless reference signals, we propose recording a 

multi-lead ECG signal on the torso in the vicinity of the arms 

and using it to reconstruct signals without EMG and other noises 

caused by body movements. 

The SimEMG database and acquisition method may be of use 

to the researchers and practitioners measuring EMG signals, 

whereby, the noise-free SimEMG ECG signal can be used for 

elimination of the cross-talk during an EMG assessment. 
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