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Abstract— This paper explores the potential improvement in 

the SegFormer model's performance for lesion segmentation in 

mammograms (MGs) by incorporating saliency maps from the 

GLAM model. The GLAM model was trained on a million MGs, 

thus it is reasonable that the model demonstrates a broader scope 

of generalization compared to the models trained on just a few 

hundred or thousand images (which are available in the open 

datasets). Consequently, the GLAM model outputs can be 

considered as robust input features. The study was conducted by 

comparing the performance of the SegFormer model trained on i) 

exclusively on MGs (referred to as "only MG"), ii) a combination 

of saliency maps and MGs (referred to as "combined") and iii) 

exclusively on saliency maps (referred to as "only saliency"). The 

findings suggest that despite the GLAM model being pretrained on 

a significant number of MGs, the saliency maps it generated did 

not enhance the segmentation task. Instead, they introduced 

uncertainty for both the saliency-only and combined models. This 

led to an average F1 score of 25.65% and 49.91%, respectively, in 

comparison to the only MG model, which achieved a higher score 

of 52.95%.

Keywords— GLAM, SegFormer, segmentation, 

mammographic images 

I. INTRODUCTION

There is a clear need for an automated high-quality 

interpretation of digital mammography for timely support to 

combat breast cancer, the most frequent cancer type in women 

[1]. The problem of lesion detection in breast mammography 

(MG) images has received new incentives with advances in 

performance in classification on natural images using deep 

convolutional neural networks. This has been facilitated by the 

increasing availability of collected cancer medical imaging data, 

providing an opportunity to develop and advance timely and 

affordable cancer detection [2], [3] enhancing the efficiency in 

clinical workflow.  

Breast cancer lesion segmentation models can be trained 

using state-of-the-art semantic segmentation frameworks 

developed based on powerful natural image segmentation 

architectures [4]. Reviews of models for breast segmentation 

tasks in [3] confirm the most frequent usage of U-Net 

architecture [5] and individual open datasets, modest in size and 

quality. Some recent works report results on the NYU Breast 

Cancer Screening Dataset (NYUBCS) [6], which contains about 

1 million MG images but remains closed to the public. The 

NYUBCS database offers enough data to train deep MG 

segmentation models, without resorting to transfer learning 

from models trained on natural images. There are multiple 

aspects that differentiate natural from medical images, and in 

the context of MG, it is their high resolution and small regions 

of interest, critical for early cancer detection. Thus, downsizing 

MG to capture the global image features has to be 

complemented with high-capacity networks working on high 

resolution image patches, as in [7]–[9] where the ResNet 

architecture has been deployed. The globally aware multiple 

instance classifier (GMIC) [10] for breast cancer screening 

achieves an area under the curve of 0.93 on NYUBCS. This 

work is further extended into Global-Local Activation Maps 
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(GLAM) [9] which further exploits weekly supervised learning, 

and guided by class labels, the model additionally outputs high-

resolution saliency maps identifying malignant and benign 

regions in the breast tissue, further improving the GMIC Dice-

score for 20 % on NYUBCS. 

Advances in natural language processing were a motivation 

to introduce transformers in computer vision tasks, starting from 

the Vision Transformer (ViT) [11] for classification, while its 

potential in semantic segmentations was shown in [12]. 

SegFormer architecture proposed in [4] is a ViT-based semantic 

segmentation framework introducing changes in both the 

encoder and decoder levels. SegFormer offers a positional-

encoding-free and hierarchical transformer encoder and an all-

multi-layer perceptron (All-MLP) lightweight decoder, 

simultaneously achieving accuracy, efficiency, and robustness 

[4]. 

In this work we try to build on the previous efforts regarding 

breast lesion segmentation [7]–[9] and use saliency maps 

outputs of the GLAM model, trained on about 1 million MG 

images, combined with the original image as the 3-channel input 

of the SegFormer MiT-B3 model [4]. We rigorously validate 

this performance for different datasets to monitor improvements 

in the segmentation task using the saliency maps, as an 

additional localization assistance. Moreover, the performance 

on different datasets has been observed to stress the change in 

model performance for heterogeneous datasets and the 

importance of model robustness to image quality.  

The research is limited only to the SegFormer architecture 

[4], since in the previous study on the INBrest database [13] it 

obtained an F1 score (85.6%) [14] which was in the range of the 

best models (UNet 69.3%, FusionNet 73.2%,  FCDenseNet103 

76.1% and  AUNet 79.1%)[15]. 

II. DATABASES

The databases that were used in this study are three public 

datasets CBIS-DDSM [16], INbreast [13], and CSAW-S [17], 

and a new MG dataset collected within the ongoing Horizon 

2020 INCISIVE project [18]. 

CBIS-DDSM – Curated Breast Imaging Subset [16] is an 

updated and standardized version of the Digital Database for 

Screening Mammography (DDSM). The CBIS-DDSM 

collection includes a subset of the DDSM data selected and 

curated by a trained radiologist. All pathologies are confirmed 

histologically. Original scanned images stored in LJPEG format 

have been decompressed into 16-bit TIFF files and then 

converted into DICOM format. The image resolution varies in 

the range of 42-50 microns. The annotations include labels for 

calcifications and masses. Since the task in this study was lesion 

segmentation, only images containing masses (1514 of them) 

were included.  

INbreast mammography dataset [13] is one of the most 

frequently exploited datasets because it contains highly accurate 

annotations proved by histological information. The MGs are 

genuinely digital, where the size of pixels is 70 microns and 

pixel contrast resolution is 14 bits. INbreast contains 

annotations for four different classes: masses, calcifications, 

asymmetries, and distortions. As in the previous dataset, only 

MGs with masses (107) were included.  

CSAW-S – Cohort of Screen-Aged Women – Segmentation 

[17] is an open curated digital MG dataset where trained

radiologists annotated cancer, calcifications, and lymph nodes,

and a non-expert annotated other parts such as thick vessels,

foreign objects, skin, nipple, text, non-mammary tissue, pectoral

muscle, mammary gland, and background. Public data were

available as 8-bit PNG images obtained from original DICOM

files. Although the CSAW-S dataset contains 349 MGs, only

305 containing lesion labels were included in this study.

Information about image resolution is not available.

INCISIVE-MG-L is a small subset of the INCISIVE dataset 

[18] containing 1563 annotated MGs stored in DICOM format.

Experienced radiologists annotated image regions

corresponding to lesions (benign, malignant, or suspicious),

calcifications, and clips. Although there are only 3 data

providers (AUTH, HCS, and UNS), data was collected from

more than three different institutions, as HCS contained the data

from several medical clinics. MGs obtained from AUTH and

UNS are originally digital, while the HCS subset contains

scanned MGs as well.

Since the lesions in MGs are usually small compared to the 

size of the whole image, in order to reduce class imbalance, the 

dataset is reduced to MGs containing lesions. The number of 

images per dataset and its share of the total number of images is 

illustrated in Fig. 1. 

III. METHODOLOGY

Three experimental setups were evaluated using the same 

SegFormer [4] architecture to produce a lesion segmentation 

mask, but differ in the input. In the first setup, the input is a 3-

channel grayscale image constructed from the preprocessed 

original MG (referred as “only MG”). In the second setup, the 

input image, as separate channels, contains the preprocessed 

original MG, and benign and malignant saliency maps obtained 

from the GLAM network outputs for given MG (referred to as 

“combined”). In the third setup, malignant saliency maps were 

employed to create a three-channel grayscale image, serving as 

the input. The last setup, referred as "only saliency", was not 

part of our initial study plan. It was prompted by the 

unsatisfactory F1 score of the combined model, aiming to get 

deeper insight of the impact of saliency maps.  

All  experimental setups have a preprocessing step to adapt 

Fig. 1. Distribution of images per dataset 
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MGs to GLAM input, as the first step. In the combined and only 

saliency setups, pretrained GLAM model [9] was used to create 

saliency maps. After that, depending on the setup, preprocessed 

MG and saliency maps were used to create inputs for a 

SegFormer model. From this point, SegFormer models in all 

setups were trained and tested in the same manner.  

A. MG Preprocessing

To adapt the used MGs to the GLAM input, several

preprocessing steps have been applied, the results of which are 

shown in Fig. 2. The first step is to create uniform MGs with 

dark backgrounds (Fig. 2B). After that, images are constrained 

by removing constant edge pixels. The next step is applying 

linear interpolation based on their pixel spacing attribute, where 

this information is known, to a fixed spacing of 0.1. The images 

are oriented towards the right (Fig. 2C). Based on intensity 

levels, breast segmentation masks are obtained which are used 

to remove non-breast artifacts such as image label information 

(breast view position or laterality) by cropping (Fig. 2D). Using 

the same mask, based on histogram information of the covered 

pixels, a piecewise linear transformation is applied to the 

intensities to clip 2 % of the darkest and 1 % of the lightest 

intensities (Fig. 2E). Additionally, to adapt to image size 

requirements of the GLAM input the images are zero-padded to 

a fixed size of 2944×1920 pixels. 

B. Saliency Maps Creation

To create saliency maps, the pretrained GLAM model [9] is

used, which was trained on 186816 examinations of NYU 

Breast Cancer Screening Dataset v1.0. The GLAM model 

consists of 2 modules (global and local) that jointly produce 

high-resolution saliency maps over the initial image. The global 

network, a ResNet-like architecture, combines 3 saliency maps 

at different scales to produce the global saliency map. The 

resulting global saliency map is used for the selection of patches 

that represent inputs for the local network. The local network is 

based on the ResNet-34 architecture and creates fine-grained 

saliency maps for each patch. Finally, the model aggregates the 

results from the local and global outputs to create the two final 

maps containing scores for each pixel belonging to a malignant 

or benign lesion. These scores for malignant and benign lesions 

will be further referred to in the text as malignant and benign 

saliency maps (see Fig. 3.). Additionally, as our model does not 

need to differentiate between benign and malignant lesions, 

these saliency maps were merged into a single saliency map 

encompassing all possible lesions, referred to in the text as 

"joint". 

C. SegFormer Architecture

SegFormer [4] architecture consists of 3 main parts as
illustrated in Fig. 4. The first part is the transformer encoder 
which produces hierarchical feature maps at various resolutions 
(backbone in Fig. 4). The second part is the neck which uses 
multi-layer perceptron (MLP) to up-sample these features to the 
resolution equal to one-fourth of the input image resolution. The 
last part is an MLP which produces a lesion segmentation mask. 

1) Semantic Segmentation Backbone

The backbone extracts features with different resolutions in 4
stages (128×128×C1, 64×64×C2, 32×32×C3, and 16×16×C4) 
from an input image whose size is 512×512×3 (Fig. 3). The 
basic building block is the Mix Transformer encoder (MiT) 
consisting of Overlap Patch Embedding, SegFormer Block, and 
Overlap Patch Merging. Authors in [4] proposed 6 different 
architectures MiT0–MiT5 which differ in the number of MiT in 
each stage, expansion ratio, and number of channels in the 
Overlap Patch Merging block. For the MiT-B3 encoder, which 
is used in this study, the number of channels in each stage 
follows the ResNet principle thus C1 = 64, C2 = 128, C3 = 320, 
C4 = 512, and the numbers of MiTs in each stage are N1 = 3, N2 
= 3, N3 = 18 and N4 = 3. 

Overlap Patch Embedding is used to transform input features 
into patches of predefined sizes, as in [11]. The applied stride is 
smaller than kernel size to ensure sharing of information 
between patches and it is implemented as a convolutional layer. 
The output of Overlap Patch Embedding goes into the 
SegFormer block. 

SegFormer block normalizes input data, which goes through 
an efficient self-attention module whose output is added with 
input data. After that, these new features are normalized again, 
and go into the Mix feed-forward network whose mapping can 
be described as follows: 

( )( )( )3 3MLP GELU DWC MLP( )
×

= +
out in in

x x x  (1) 

where xin and xout are input and output features, DWC – Depth-
Wise Convolution [19], and GELU – Gaussian Error Linear 
Unit [20].  

The major bottleneck of the SegFormer architecture is the 
self-attention module, thus it is implemented as an efficient 

Fig. 2.  Example of MMG transformation in preprocessing A) original image; 
B) negation; C) orientation toward right with histogram of the breast tissue; 

D) segmentation mask; E) preprocessed result with the histogram of the 
breast tissue. 

A) B)  

Fig. 3.  Example of saliency maps generated by GLAM for benign (A) and 
malignant (B) lesions. Saliency maps are coded with viridis colormap where 

blue is 0 and yellow is 1. Red contours mark true lesions.  
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realization described in [12]. The main idea is to reshape the 
matrix of key vectors and linear transform it into a new space 
and after that multiply it with the query matrix.  

Overlap Patch Merging combines features generated by the 
SegFormer block and reorganizes them into required setting 
required space dimensions. 

2) MLP decoder

By creating hierarchical feature maps in the backbone, that

provide sufficient details, SegFormer can use a lightweight 

decoder consisting only of MLP layers. The first MLP layer 

transforms feature maps form different stages (in Fig. 4. 

represented as rectangular cuboids) such that they have the same 

number of features (in our case C = 768), and second layer up-

sample them to have the same space dimension (in our case 128, 

see Fig. 4). Note that features from first stage do not require up-

sampling. After that, additional MLP transforms the 

concatenated features into lesion segmentation mask (NC = 2). 

D. Experiment Setup

In all conducted experiments, we used the same setup for

training SegFormer models. Instead of random initialization, the 

models’ weights were initialized with the weights of the model 

[4] pretrained on several image datasets (ImageNet-1k,

ADE20K, Cityscapes, and COCO-stuff). Since semantic

segmentation is a classification task at the pixel level, cross-

entropy was selected as a loss function. The model parameters

were estimated by Adam optimizer with the learning rate

0.00006, decay rate for momentum 0.9, and decay rate for

squared gradients 0.99. In order to avoid overfitting early

stopping is applied if in 10 consecutive epochs F1 score on the

validation set does not increase. Although the maximum number

of epochs was set to 1000, training procedures stopped after 16

to 33 epochs. Due to memory limitations on GPU, the mini-

batch size was set to 4.

IV. RESULTS

Since the original GLAM implementation [9] does not 

provide an interpretation of saliency map values nor performs 

the analysis of an appropriate threshold for binarization, this 

work attempts to remap the outputs as accurately as possible to 

the expert annotations. Initial investigations were conducted on 

how well the obtained saliency maps match lesions within the 

dataset. As the probability values can be very low, we 

investigated a range of threshold values to create an initial 

binarized version of the maps to use for comparison. The best 

results were obtained for the threshold value 0.1 and F1 scores 

(observing only the positive, lesion class) are shown in Table 1. 

Raws UNS, AUTH, and HCS refer to different providers of 

mammography images in the INCISIVE dataset, while raw 

INCISIVE combines the results of all three providers observed 

jointly. The results indicate that there is a clear mismatch 

between the output maps even with a such generous threshold 

value, but considering the higher sensitivity result, the maps can 

exhibit the ability to detect something in areas of the lesions. 

However, these results are in line with the reported scores which 

have a high standard deviation in [9]. While our objective is to 

segment all types of lesions, the highest F1 scores were achieved 

with malignant ones. This is the reason why in the third 

experimental setup we selected malignant saliency maps as the 

input features. 

During all conducted experimental setups MiT-B3 

SegFormer architecture is used, because in previous 

investigations it achieved the best performances [14]. To obtain 

more confident results, a 5-fold cross-validation was used in all 

experiments. The obtained average F1 score plus-minus 

standard deviation across all folds are shown in Table 2. As 

mentioned before, in the first setup the model input was only 

MG (in Table 2. marked as Only MG) and in the second setup 

Fig.4 SegFormer architecture 
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model input was MG combined with the two GLAM saliency 

map outputs (in Table 2. marked as Combined). The SegFormer 

model trained only on MGs shows better performance overall, 

while the model with the combined input shows improvement 

in the case of CSAW-S dataset shows for the combined input. 

These results indicate that the saliency maps introduce only the 

noise. To prove this assumption, additional setup (termed “Only 

saliency”) was introduced to train SegFormer only on malignant 

saliency maps (that produce the highest F1 scores in Table 1.) 

The “Only saliency” obtained results (Table 2) are the worst by 

the large margin. However, since they are better than those 

presented in Table 1, the saliency maps potentially contain 

information regarding true lesions besides the noise. This result 

eliminates another possible assumption that the SegFormer 

model pretrained on natural images cannot learn appropriate 

weights for given mixture of different pixel types (intensity and 

probability) per channel. 

Regarding the images that were used for training the GLAM 

model, there is a resolution difference between them and the 

images in this study, thus potentially being a source of 

uncertainty from the obtained saliency maps. To this end, the 

input of the GLAM model was changed, so that the MGs were 

magnified in a way that the breast covered the most part of the 

image as in GLAM demo images. Unfortunately, there is no 

apparent difference between the obtained results. 

V. CONCLUSION

This study aimed to exploit the knowledge incorporated in the 

GLAM model, trained on approximately one million MGs, for 

lesion segmentation. Despite its extensive training data, the 

GLAM model exhibited insufficient performance on open and 

our datasets. One potential explanation could be variations in 

imaging protocols and medical devices used for image 

acquisition between the NYUBCS dataset and other datasets. 

Typically, a standard approach to leverage a pretrained model 

involves its fine-tuning, but this was unattainable due to 

hardware limitations. Consequently, we explored an alternative 

by utilizing the saliency maps generated by the GLAM model. 

Our experiments showed no apparent improvement when 

compared to the model that used only MGs as input of the 

SegFormer. We presume that saliency maps do not contain 

sufficient information to distinguish lesions from normal tissue, 

which we confirmed by training a model using only saliency 

maps as input. 

COMPLIANCE WITH ETHICAL STANDARDS 

This work uses four databases of mammography images, each 

resulting from studies with obtained ethical approvals. Datasets 

open for the public used in this study are CBIS-DDSM, 

INbreast, and CSAW-S. This research study was conducted 

retrospectively using mammography images from human 

subjects which were made available in open access by Lee et. al 

[16] for CBIS-DDSM, Moreira et al. [13] for INbreast, and

Matsoukas et al. [17] for CSAW-S. Ethical approval was not

required as confirmed by the license attached with the open

access data. Within the INCISIVE project, the data used in this

study has been collected in the retrospective study in several

hospitals using the same protocol which has been evaluated and

approved by the corresponding ethical councils during in the

ethical board meetings: (1) No. 4/21/1-40/ (11.01.2021) of

Vojvodina Institute of Oncology, Serbia (as data provider for

University of Novi Sad, Serbia), (2) no. 3936 (25.02.2021) for

Theageneio hospital, Thessaloniki, Greece and decision no.

114/17-2-2021 for the Radiology Laboratory of the General

Hospital “Papageorgiou”, Thessaloniki, Greece (for the

Aristotle University of Thessaloniki, Greece), (3) Νο 589/13-

10-2020 General Anti-Cancer - Oncological Hospital of Saint

Savvas, Athens, Greece and Νο. 10/30-03-2021 for Theageneio

hospital, Thessaloniki, Greece (for the Hellenic Cancer Society,

Greece). It is worth noting that all INCISIVE images were de-

identified using CTP DICOM anonymizer, prior to being

uploaded by the data providers to the central repository. All

image analysis has been done on the AI development platform

on the central repository, without image download.
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TABLE 1 
F1 SCORES IN PERCENTAGES BY DATASET FOR RESEMBLANCE OF BINARIZED 

MASKS PRODUCED BY GLAM MODEL AND GROUND TRUTH MASKS, FOR A 

THRESHOLD OF 0.1. 

Dataset Malignant Benign Joint 

INbreast 34.22 30.86 30.14 

CSAW-S 22.14 16.90 16.63 

CBIS-DDSM 8.43 8.53 8.53 

UNS 27.08 27.71 27.67 

AUTH 18.05 18.47 18.47 

HCS 23.69 22.32 22.09 

INCISIVE 24.18 23.24 23.05 

Total 22.24 19.88 19.34 

TABLE 2 
F1 SCORES IN PERCENTAGES OBTAINED FROM THE EXPERIMENTAL SETUPS 

TEST FOLDS, WHEN THE INPUT IS MGS (ONLY MG), COMBINATION OF MG AND 

SALIENCY MAPS (COMBINED), AND ONLY MALIGNANT SALIENCY MAPS. 

Dataset Only MG Combined Only Saliency 

INbreast 74.99 ± 5.49 71.89 ± 5.35 56.17 ± 7.67 

CSAW-S 34.91 ± 5.76 39.54 ± 2.55 30.33 ± 2.42 

CBIS-

DDSM 
56.78 ± 4.64 51.22 ± 2.87 10.01 ± 1.10 

UNS 43.18 ± 9.43 42.78 ± 7.98 25.47 ± 10.20 

AUTH 42.01 ± 13.78 41.71 ± 15.38 16.9 ± 10.51 

HCS 46.12 ± 2.47 42.35 ± 1.46 23.81 ± 1.14 

INCISIVE 45.04 ± 2.60 41.83 ± 1.35 23.67 ± 2.62 

Total 52.95 ± 2.57 49.91 ± 2.62 25.65 ± 2.77 
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