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Abstract— The increasing penetration of renewable energy 

sources (RES), such as photovoltaics (PV) and wind turbines, has 

brought many challenges to the grid due to their intermittency 

and variability. Battery energy storage systems (BESS) are 

considered as one of the most effective solutions to mitigate 

adverse impacts of RES integration and ensure stability and 

reliability. BESS offer several advantages over other energy 

storage systems, such as fast response, controllability, 

geographical independence and flexibility. This paper reviews 

techniques for optimal placement, sizing and operation of BESS. 

The optimization objectives and techniques have been classified 

into three categories. The advantages and disadvantages of 

different methods are emphasized. Additionally, this paper 

compares different battery technologies and discusses BESS 

applications.  

Keywords— Renewable sources, battery energy storage systems, 

objective functions, optimization methods 

I. INTRODUCTION 

Conventional power systems have significantly changed in 
the last few decades due to the technological advancements, 
global electricity demand growth, electricity market 
liberalization and initiatives to reduce carbon-dioxide 
emissions. Electricity generation in the past predominantly 
relied on non-renewable sources such as fossil fuels. Fossil 
fuels combustion releases large amounts of greenhouse gases 
(GHG) that affect global warming and climate change. Shifting 
towards cleaner and more sustainable sources has become main 
strategy in fight against climate change. Renewable energy 
sources (RES) like solar, wind, hydroelectric and biomass stand 
as the main alternatives to fossil fuels and most effective way to 
reduce emission of harmful gases. Renewable sources 
integration enables power generation near the consumers. This 
local power generation in the proximity of load centers is 
known as distributed generation (DG) [1]. Distributed 
generation from RES offers many economical and technical 
improvements within the grid, such as: power loss reduction, 
voltage profile improvements, stability and reliability 
enhancement [2]. The output power of renewable sources is 
highly variable due to their intermittent nature, influenced by 
factors such as weather conditions and time of day. This 
variability creates constant mismatch between demand and 
supply, and can lead to potential issues with grid stability and 
reliability. To address these issues, energy storage systems 
(EES) are employed. In order to balance demand and supply, 
EES can store excess energy during the periods of high 
production and release energy during times of low production. 

To this day, a large number of different storage technologies 
have been developed, such as: supercapacitors, superconducting 
magnets, flywheels, pumped hydroelectric storage, compressed 
air energy storage (CAES) and battery energy storage systems 
(BESS). With flexibility in terms of capacity and location, rapid 
response and scalability, battery systems stand out among all 
aforementioned technologies. These advantages make BESS 
suitable for various power system applications such as power 
quality improvements, peak shaving, voltage regulation, 
frequency regulation and energy arbitrage [3]. The 
implementation of oversized BESS can lead to unnecessary 
costs, while undersized BESS may not provide desired 
improvements. To avoid unnecessary costs and ensure technical 
improvements to the network, optimal sizing and placement of 
BESS are of key importance.  

This paper provides an overview of various battery 
technologies employed in distribution system (DS) and 
discusses the practical applications of BESS. With a primary 
emphasis on optimizing BESS integration, it surveys various 
methods used to optimize location and size of BESS. The aim 
of this paper is to give readers a better understanding of the 
current state, challenges, and opportunities associated with 
BESS implementation by providing a detailed overview of 
different battery technologies, their applications in grid and 
methods for optimal location and size determination.  

II. TYPES AND APPLICATIONS OF BATTERY TECHNOLOGIES

BESS represent technical solutions for numerous issues in 
distribution systems. Their flexibility and fast response makes 
them a suitable tool for improving network stability, reliability 
and profitability. Different BESS technologies and their 
applications are discussed in the following subsection. 

A. Comparison of Battery Technologies

A various types of batteries have been developed. Each type of 
battery differs in efficiency, cycle life, operating temperature, 
depth of discharge (DOD), response time, self-discharge rate, 
power and energy density. Comparison of different batteries 
technologies is presented in Table I. Based on its features, each 
type of battery has a suitable application. In recent times, 
lithium-ion batteries have become dominant technology in grid-
scale BESS deployments [4]. Different grid-scale application 
has different requirements in terms of response time, efficiency, 
stability and reliability of BESS. The selection of appropriate 
battery technology depends on type of application, costs, 
energy density and environmental impacts. 
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TABLE I.  COMPARISON OF CHARACTERISTICS OF DIFFERENT BATTERY TECHNOLOGIES [5-9] 

Battery 

technology 

Efficiency 

(%) 

Cycle 

life 

Power 

density 

(Wh/kg) 

Energy 

density 

(W/kg) 

Self-

discharge 

rate (daily) 

Strength Weakness 

Lead-acid (LA) 70-90 1200-
1800 25–50 180-200 <0,3% Simple and cheap Very heavy, low energy density 

Nickel-
Cadmium 

(NiCd) 
75-85 <3500 50-75 150-300 0.2-0.6% 

Low maintenance requirements, 
long cycle life 

Environmental hazardous, 
memory effect  

Lithium-Ion 
(Li-Ion) 85-90 1000-

20,000 75-200 150-2000 0.1-0.3 
High efficiency and energy 
density 

Safety concerns, performance 
degradation over time, limited 
operating temperature 

Sodium–Sulfur 
Battery (NaS) 75-95 2500-

4500 150-240 150-230 0.05 

High efficiency and cycle life, 
fast response (<5ms), 
environmentally friendly 
technology 

Safety issues at higher 
temperature, sodium polysulfide 
is a very corrosive material 

Sodium-Nickel 
Chloride 
(ZEBRA) 

95 >2000 100-120 150-200 5 
Low maintenance requirements, 
long cycle life and safety 

Expensive technology, lower 
corrosion compared with NaS 

Vanadium-
Redox (VRB) 75-85 1200-

1400 10-50 166 Very low Long life cycle and stability, 
Adaptable for various RES 

Complexity and small energy 
density 

Zinc-Bromine 
(ZBB) 75-85 2000-

20000 30-85 100 Almost zero 

Low self-discharge rate, long 
lifetime, deep discharge 
capability (100% DOD) 

Operating costs due to the 
control of electrolytic flows and 
pumps, dendrite formation, 
corrosivity 

Polysulfide-
Bromine (PSB) 75-85 <2000 30-85 / Almost zero 

Fast response time Complexity and difficult 
maintenance, environmental 
hazardous  

 

B. BESS Applications 

Some applications of BESS in distribution systems include: 
improvement of power quality, voltage regulation, peak load 
shaving, frequency regulation and energy arbitrage. 

Degradation in power quality affects consumers, highly 
automated industries and sensitive loads, specifically. BESS 
can effectively compensate various fluctuations in network 
such as: voltage sags and swells, flickers, frequency deviations, 
harmonics, etc. This is achieved by adequate control of the 
charging and discharging modes of the batteries.  

Voltage variations in the network have a major impact on 
the stability of the network. Voltage regulation is achieved by 
controlling the flow of reactive power in the network. BESS 
can maintain voltage levels within specified limits by injecting 
or absorbing reactive power. Control strategies for voltage 
regulation using BESS are presented in [10] and [11]. 

Peak load shaving refers to the process of flattening the 
daily load curve by shifting some loads from peak period to off-
peak period. Control algorithms for peak load shaving using 
BESS are presented in [12] and [13]. 

To maintain frequency within specified limits it is necessary 
to immediately balance production and demand. The fast 
response of BESS (<20ms) makes them suitable for frequency 
stabilization. Control strategies for frequency regulation with 
BESS are developed in [14] and [15]. 

Energy arbitrage is a strategy of buying or producing 
electricity when prices are low, and selling it when prices are 
high. BESS can optimize economic value of electricity through 
energy arbitrage. In order to achieve maximum profits through 
energy arbitrage, various strategies for BESS management were 
considered in [16] and [17].   

 

III. OPTIMAL PLANNING OF BESS 
Optimal planning of BESS involves determining variables 
such as location, size or optimal management schemes of 
BESS in order to achieve a specific goal expressed by an 
objective function. Generally, an objective function is a 
mathematical expression to be minimized or maximized: 
 
  OF = min f(x), (1) 

where f is objective function to be optimized and x is the 
vector of variables. The goal is to find the values of those 
variables that minimize (or maximize) the objective function 
while simultaneously satisfying various equality and inequality 
constraints. The objective function can have one or combine 
several optimization goals that can be based on technical, 
economic or environmental criteria. Economic optimization is 
most often carried out with the aim of minimizing overall costs 
in the network and/or maximizing profits from electricity 
trading. The technical objectives of the optimization include: 
minimization of the total power losses, voltage profile 
improvement, minimization of frequency deviations and 
improvement of system reliability. Environmental optimization 
criteria refer to the minimization of harmful gas emissions and 
the promotion of sustainability. Many mathematical 
expressions have been developed to evaluate the costs, power 
losses, voltage and frequency deviations and ecological 
benefits. Some of them used in the optimization of size and 
location of BESS and DG are summarized in Table II.  
In the following section, an overview of methods for optimal 
sizing and placement of BEES is provided. 

IV. CLASSIFICATION OF OPTIMIZATION METHODS 
Methods for optimal planning of BESS can be classified 

into three groups: conventional, metaheuristic, and artificial 
intelligence-based methods. 
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TABLE II.  OBJECTIVE FUNCTIONS FOR DIFFERENT CRITERIA OF OPTIMIZATION 

Criteria of 

optimization Objective of optimization Mathematical expression Reference 

Economic 

Minimization of total cost 
min Ct = CCpt + CMnt 

CCpt and CMtn are the annual capital cost and the annual maintenance 
cost. 

[18] 

Maximization of the net present 
value (NPV) 

NPV=∑
Rt-CO&M

t -CRep

(1+id)t

M

t

-Ccap 

Rt is the system revenue in year t due to the use of the RES; id is the 
discount rate; CO&M

t  is the annual operation and maintenance cost; 
CRep  is the replacement cost; Ccap is the capital cost. 

[19] 

Minimization of levelized cost of 
electricity (LCOE) 

𝐿𝐶𝑂𝐸 =
𝑇𝐿𝐶𝐶

𝐸
=
𝑇𝐿𝐶𝐶𝑃𝑉 + 𝑇𝐿𝐶𝐶𝐵𝐸𝑆𝑆 + 𝑇𝐿𝐶𝐶𝑑𝑖𝑠𝑔𝑒𝑛 + 𝑇𝐿𝐶𝐶𝑅𝑂𝑅

∑ 𝑃𝑙𝑜𝑎𝑑(𝑡)
8760
𝑡=1 ×△ 𝑡

 

E is the annual energy demand of the system (kWh); 𝑇𝐿𝐶𝐶𝑃𝑉, 
𝑇𝐿𝐶𝐶𝐵𝐸𝑆𝑆, TLCCdisgen, 𝑇𝐿𝐶𝐶𝐻𝐸 are the total cost of PV, BESS, diesel 
generator and run-of-the-river hydropower system, respectively. 

[20] 

Minimization of total cost of 
PV/BESS system 

TC=ProfitPV-TIPV/BESS 
ProfitPV is the profit coming from energy generated by the PV system 
TIPV/BESS is the total investment of the PV/BESS 

[21] 

Technical 

Minimization of total losses of 
active power 

OF= min(∑|Ii|
2Ri

Nbr

i=1

) 

Ii is the current of the i-th branch, Ri is the resistance of the  i-th 
branch, Nbr is the total  number of branches. 

[22] 

Improvement of volatge profile of 
network 

OF= min(∑|Vref-Vi|
2

Nbus

i=1

) 

Vref is the nominal voltage, Vi is the operating voltage in the bus i. 

[23] 

Minimization of power 
fluctuations in distribution system 

OF=∑Dm

(

 √∑(Ps(t)+Ps̅)
2 T⁄

T

t=1
)

 

M

m=1

 

Ps(t) and Ps̅ are the grid input active power at time t and average 
value of Ps(t) during the time period T, respectively. 

[24] 

Minimization of fluctations based 
on voltage sensitivity index  OF= min∑(e100∂V

∂P+e100∂V
∂P)

Nbus

i=1

 [23] 

Loss of power supply probability 
LPSP=

∑ (Pload(t)+PBESS,CH(t)−Psupply(t) − PBESS,DCH(t))8760
𝑡=1

∑ Pload(t)8760
t=1

 

Pload(t) is the power demand at time 𝑡; PBESS,CH(t) and PBESS,DCH are 
BESS’s charged and discharged power; Psupply(t) is the power supply. 

[20] 

Environmental 

Minimization of carbon dioxide 
emissions 

𝑂𝐹 = min(𝑃𝑡
𝑔𝑟𝑖𝑑

∗ 𝐸𝑚) 
𝑃𝑡
𝑔𝑟𝑖𝑑 is the power from utility grid, 𝐸𝑚 is the carbon emission rate. 

[25] 

Minimization of GHG emission 
from diesel generators 

GHGem=∑ FCdis gen(t)×EFGHG

8760

t=1

 

EFGHG is the total emission factor of diesel generator for greenhouse 
gasses (kg/L). 

[20] 

A. Conventional Methods 

Conventional methods used to solve the optimal size and 
locations of BESS are reviewed in this section. Their 
advantages and disadvantages are discussed. 

a) Analytical methods: These methods utilize 
mathematical models and analytical techniques to find optimal 
solution to optimization problem. Mathematical models 
involve setting up numerical equations based on mathematical 
and theoretical analysis. The accuracy of the analytical method 
largely depends on the developed model. The advantages of 
these methods are simple implementation and fast convergence 
towards the optimum. Analytical methods use some 
simplification of mathematical models which can affect the 
accuracy of the solution [26]. An analytical multi-objective 
index method to determine the optimal power of PV systems 
and BESS with the aim of reducing total losses and improving 

the network voltage was used in [27]. An analytical approach 
was used for simultaneous determination of optimal buses and 
capacities of RES and BESS in [28]. Objective of optimization 
was minimization of energy losses and improvement of 
voltage profiles. 

b) Dynamic programming (DP) is a type of multi-stage 
sequential decision procedure. The main disadvantage of DP is 
that it can be computationally burdensome [26]. Optimal 
energy management of hybrid system that combines PV 
systems, wind turbine, diesel generator and BESS was 
achieved using DP in [29]. Minimization of operation cost and 
reduction of CO2 emission were optimization goals. 

c) Mixed Integer Linear Programming (MILP) consists 
in defining the objective function and various equality and 
inequality constraints. Variables in the MILP model can be 
continuous and integer. If the objective function and 
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constraints are a nonlinear problem, they need to be linearized 
using appropriate linearization techniques to obtain an 
equivalent linear MILP model. MILP optimization problems 
are often solved using commercial software such as CPLEX or 
Gurobi. The main disadvantages of MILP are: the difficulties 
in applying it to real-size problems, excessive memory 
requirement and computation time [30]. Optimization 
approaches based on MILP method for BESSs optimization 
are proposed in [31], [32], [33]. 

B. Metaheuristic Methods 

Many metaheuristic methods have been developed to mimic 
some biological, physical or social process. Main advantages of 
these methods are adaptability, high accuracy rate, less 
computational time and the ability to solve complex 
optimization problems [34]. Complex problems include 
mathematical models where objective function and constraints 
are highly nonlinear, nonconvex and non-differentiable, with 
both continuous and discrete variables.  

a) Genetic algorithm (GA): This algorithm starts with a 
population of individuals which represents a set of possible 
solutions of the optimization problem. After series of 
operation, which include quality evaluation of each individual 
(based on fitness function, selection, crossover and mutation), 
new population is made. The genetic algorithm is executed 
sequentially through a series of iterations until a predetermined 
criterion for the algorithm termination is met. The best 
individual from the last generation represents the solution of 
the optimization problem. Various variants of GA have been 
developed to enhance its performance. The method that 
combines GA with linear programing method (GALP) was 
proposed in [35] for simultaneous determination of optimal 
number, size, location, and scheduling of BESS. Optimization 
was performed based on a cost function in which loss 
reduction and environmental benefits are converted to 
economic benefits. NSGA (Non-dominated Sorting Genetic 
Algorithm) is an enhance variant of GA which is used for 
multi-objective optimizations. The solutions are initially sorted 
based on their dominance to form a set of non-dominant 
solutions, namely Pareto front. Solutions in the Pareto front are 
such that it is not possible to improve one objective without 
worsening other objectives. Advanced variant of this 
algorithm, NSGA-II, was applied for optimal sizing of BESS 
in [36] and [21]. 

b) Particle swarm optimization (PSO): This method was 
inspired by the behavior of a flock of birds. In PSO, a large 
number of particles move through the searching space looking 
for an optimal solution. Each search particle represents a 
potential solution. In each iteration, the global and local best 
position of particles are calculated and used to modify their 
position and direct them towards the optimal solution. PSO 
method was used in [37] to optimize size and location of 
BESSs and DGs in order to increase the profit of distribution 
company. Aiming to minimize power losses, peak demands 
and costs caused by the voltage deviations in the distribution 
network, GA and PSO methods were adopted in [38], 
determining the optimal size and location of BESS and DG. 
Efficiency comparison of GA and PSO showed that PSO 
provides better objective value than GA. Also, the execution 

time of the PSO method is shorter compared to GA. To 
optimize the size of PV and BESS in grid-connected 
microgrid, PSO-based method was used in [39]. Minimization 
of energy costs was selected as objective function. The 
effectiveness of the PSO-based method was compared with 
GA. The obtained results showed that PSO algorithm gives a 
better solution and that the time required to find global point is 
shorter than GA. 

c) Simulated annealing (SA): This algorithm is inspired 
by the cooling process of heated metals in metallurgy. In [40] 
the optimal BESS size was determined using PSO and SA 
methods. Minimization of total cost in the microgrid during 
sudden interruptions in main network was selected as an 
objective of optimization. It is shown that an optimally sized 
BESS can effectively stabilize the system and restore the 
power equilibrium. It is concluded that optimally sized BESS 
based on PSO, provides faster response during the emergency 
situation then the BESS sized using SA method. A modified 
simulated annealing method to solve the problem of 
determining the optimal size and locations of BESS in DS was 
applied in [41]. It is shown that the SA method is characterized 
by a faster convergence towards the optimal solution compared 
to traditional GA. 

d) Other metaheuristic methods: Method based on Tabu 
Search (TS) for optimization of size and locations of BESS 
and PV systems was proposed in [42]. Ant Colony 
Optimization (ACO) algorithm is technique inspired by the 
foraging behavior of an ant colony to find the shortest path to 
the food. This method was suggested in [43] for optimal sizing 
of PV systems, wind farms and batteries with the aim of 
minimizing total annual costs and maximizing system 
reliability. Optimal size of BESS for improving the reliability 
of a microgrid was determined using Firefly Algorithm (FA) in 
[44]. Minimization of total cost, which includes the cost of 
generation units, exchanged electricity cost, and BESS 
investment cost, was selected as objective of optimization. The 
study considered various battery technologies, revealing that 
lead-acid and Li-ion batteries offer lower overall cost 
compared to other types. Multi-Objective Modified Firefly 
Algorithm was used in [19] to find optimal size and the 
optimal management scheme of the BESS. The performance of 
this algorithm was compared with the NSGA-II algorithm and 
it was shown that MOMFA gives more accurate solutions. 
Metaheuristic optimization methods, such as gray wolf 
optimizer (GWO), particle swarm optimization (PSO), 
artificial bee colony (ABC), gravitational search algorithm 
(GSA) and genetic algorithm (GA) were used to solve the 
BESS sizing problem in [45]. A comparison on performance of 
these optimization techniques was carried out and the result 
showed that GWO gives the best solution. 

e) Hybrid methods: Each of the mentioned methods has 
its advantages and disadvantages. Often the good features of 
two or more different methods are combined with the aim of 
obtaining a more advanced method. Hybrid method that 
combines SA and TS method was developed for size 
optimization of small autonomous power system in [46]. SA 
method is characterized by fast convergence in the 
neighborhood of optimal solutions and TS method by the 
efficiency of finding the optimal solution in the given 

EEI2.1 - Page 4 of 6

58



neighborhood. These advantages were used to form a hybrid 
method where the solution obtained from the SA method was 
used as the initial solution for the TS algorithm. In [47] a 
method based on the SA and PSO algorithm was proposed for 
determining the optimal capacity of a hybrid EES system 
consisting of a battery and a supercapacitor. Methodology 
based on a combination of GA and Constraint Programming 
(CP) for battery planning and scheduling was applied in [48]. 
The optimal BESS management scheme was determined in 
[49] by applying a hybrid algorithm that combines GA and 
gravity search algorithm (GSA). 

C. Artificial intelligence-based methods 

This group of methods includes Artificial Neural Networks 
(ANN), Fuzzy Logic, Reinforcement Learning (RL), and 
Game Theory. A method based on ANN, for determining 
optimal BESS size at different locations in distribution 
networks is presented in [50]. Aiming to determine the optimal 
scheme for managing BESS, a method based on random search 
reinforcement algorithm and ANN was developed in [51]. 
Methods based on Fuzzy Logic for BESS optimization were 
applied in [52] and [53]. 

V. CONCLUSION 
Numerous benefits such as voltage stability, power quality 

enhancement, stability and reliability improvements, power loss 
reduction and profitability can be achieved with optimal 
integration and planning of BESS and RES. In grid-scale 
applications, various types of battery technologies are utilized. 
Each type of technology has its own characteristics, advantages 
and limitations, which make it suitable for specific applications. 
In this paper, a comparison of different battery technologies and 
their applications in the grid is provided, aiming to offer 
guidance for technology selection and application strategy 
development. An overview of methods for optimal placement, 
sizing and operation was conducted. Methods are categories 
into three groups: conventional, metaheuristic and artificial 
intelligence-based. Their strengths and weaknesses are 
discussed. Conventional methods are easy to implement, but 
certain approximations of mathematical models can affect 
accuracy of solution. Metaheuristic methods are characterized 
by adaptability and efficiency in solving complex multi-
objective problems. These advantages make them a popular 
choice in many optimizations. Although there are various 
metaheuristic optimization approaches, further improvements, 
such as hybridizing different algorithms or developing more 
efficient metaheuristics, are recommended to achieve global 
optimal solutions.  
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