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valentina@elfak.i.ac.rs

Abstract—There exist various ways to optimize big data
processing frameworks. The main purpose of these ways is to
find optimal configuration settings by applying a set of iterative
optimization steps. Apache Spark, which is one of the common
big data processing engines, is suitable for multi-objective tuning
methods. However, the majority of tuning techniques are adapted
either regarding the success of speedup or machine learning
methods. Different from preceding studies, this study proposes a
new energy-focused optimization algorithm for Spark (EFOS)
which is evaluated on the MLlib library of Spark. EFOS is
devised by considering the data processing processing abilities of
Spark. The findings of the study indicate that Bayes is the most
preferable MLlib algorithm to shorten optimization time. The
obtained results indicate that unsupervised learning necessitates
less time yet more CPU usage compared with supervised learning
in the tuning process.

Index Terms—Apache Spark, energy-consumption, tuning.

I. INTRODUCTION

Apache Spark is a cluster computing framework that sup-

ports various programming languages including Scala, Java,

Python, and R [1]. It provides more than 200 configurable

parameters that can be tuned in a scalable manner [2]. Thus,

tuning is inevitable for such intricate software systems. To

achieve a significant performance improvement, a tradeoff

should be found while trying different configurations [3].

To that end, the configurable parameters of Spark are ex-

posed to a specific optimization process. Since manual tuning

is a time-consuming and effort-intensive process, automated

frameworks are generally preferred to alleviate the burden that

stems from optimization. However, these frameworks adopt

some objectives including time, speedup, and memory rather

than energy consumption [4]–[6].

In a distributed data processing framework, the chosen

algorithm should be compatible with the devised architecture

[7]. For instance, training data groups retrieved from different

cluster machines are individually evaluated to merge them for a

specific purpose such as classification. MLlib is a comprehen-

sive machine learning library [8] developed for Apache Spark.

It mainly works with Resilient Distributed Data (RDD) data

format [9] which is devised for distributed data processing.

MLlib provides both data and model-based parallelism that

allows users to perform fast operations.

There exist various approaches that can be used for opti-

mizing parameters of Apache Spark: machine learning-based

[10]–[13], manual tuning [14], statistical inferences made

through log file-based [15]. The main purpose of these ap-

proaches is to improve the performance of Apache Spark,

thereby leveraging various objective functions. The success

of an objective function can be evaluated via a few criteria.

Those generally consist of elements such as memory usage

and data processing speed except for energy consumption.

Since high energy physics (HEP) experiments have to work

with large-scale data sets, they utilize big data frameworks

such as Apache Spark. Therefore, in a HEP experiment, data

processing throughput may exceed 200TB/s [16]. Although

energy consumption, on the other hand, is not a big deal for

personal computers, the objective functions of optimization

methods should include that criterion in the near future when

the data processing speed is close to that of HEP exper-

iments. To achieve a dramatic improvement, some parallel

message-passing libraries such as Message Passing Interface

(MPI) should be utilized except for the default properties of

Apache Spark. A remarkable time saving could be achieved

by combining Spark with MPI in the related programming

model that is called Blaze [17]. Figure 1 validates the findings

obtained via the conjugate gradient (CG) algorithm which

exploits matrices. CG is an iterative approach that solves linear

equations [18].
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Fig. 1. Spark CG vs. Blaze CG.

Devising optimization methods merely considering speedup

becomes superficial when it comes to systems requiring high
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energy such as HEP. Instead, there is a need for developing

multi-objective methods [19] focusing on various computa-

tional resources such as energy and memory consumption.

To fill the research gap detected above, in this study, a

new multi-objective optimization algorithm, which considers

energy consumption as a major criterion, is proposed. In the

first phase, the algorithm traces energy consumption footprints

online. Thereafter, the hyperparameter settings are configured

through a pre-determined threshold. In the second phase, the

configuration is changed depending on the success of the

MLlib method to achieve the ultimate hyperparameter set in

the iterations. Figure 2 presents the main steps of the proposed

method.
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Fig. 2. Overview of the proposed method.

This paper makes the contributions as follows: 1) A new

energy-focused multi-objective optimization algorithm is pro-

posed, 2) The responses of the algorithm depending on the

energy consumption of MLlib are evaluated, and 3) The

relationship between CPU usage and the computational burden

is investigated.

The remainder of the paper is organized as follows: Section

2 summarizes the related work. Section 3 elucidates the

proposed method. Section 4 presents the results. Last, Section

5 concludes the paper and discusses future studies.

II. LITERATURE REVIEW

Inherently, RDD is not suitable for high computational

experiments. Because some transactions such as partial wave

analysis (PWA) and lattice quantum chromodynamics (LQCD)

necessitate a message-passing interface between the processes.

There exist various studies performing a transformation on

Spark for HEP. In Xia et. al’s work [17], a new process

planning policy is developed, thereby combining Spark with

OpenMPI. They were able to achieve 70% performance im-

provement compared with the traditional Spark programming

model. MPI is remarkably faster than Spark in reading and

summarizing operations [20]. On the other hand, in terms of

scaling behavior, Spark is a preferable framework.

Loading balance is of great importance to use resources

efficiently and save energy [21]. Thus, energy consumption can

be reduced by developing algorithms seeking load balancing in

big data processing. To that end, Hibench is one of the most

well-known benchmark suites employed for testing resource

usage [22]. The effectiveness of HEP in distributed data

processing is evaluated via evaluating some criteria including

CPU usage, speedup, and memory usage [23]. Read/write op-

eration performed on the data type called HDF5 is fundamental

for HEP. Therefore, execution time is calculated depending

on the number of processes, the data compression format,

and the type of transaction (read/write). The obtained findings

indicate that chunk size does not have a direct effect on the

performance [24].

To what extent the workload is responsible for energy

consumption was investigated in the preceding studies. In one

of them, a profiling framework was developed for Kafka and

Flink to observe the energy consumption depending on the

number of nodes and processes [25].

There is a direct relationship between CPU usage and

Spark energy consumption. It thus aims to find cases in

which CPU frequency becomes high and the execution time

is short. However, that configuration should be carefully done

by considering the number of CPU cores. In doing so, 60% of

energy saving may be achieved [26]. Preceding studies have

shown that smart grid architectures have stability in terms of

energy profiling. It was detected that gradient-boosted decision

tree has an accuracy equal to or greater than those of Random

Forest and CNN. Changing design models is an alternative way

to reduce energy consumption [27]. A design model namely

Visitor was applied in Java and C++ codes [24]. It was able

to reduce energy consumption by up to 7%. That result points

out that refactoring-based techniques may open new avenues

for energy-saving methods.

The tasks allocated for Spark jobs may be planned by

creating specific clusters considering workload distribution

to reduce energy consumption dramatically. Shi et al. [28]

clustered Spark nodes, thereby utilizing historical data usage.

To achieve remarkable energy saving, task scheduling-based

workload planning should be conducted on large-scale data

sets. Otherwise, task-based scheduling becomes much more

time-consuming. In addition to this, instead of calculating the

energy consumption of all the data sets, the prediction may be

performed by exploiting a specific sub-instance group [29].

III. METHODS

A. Energy measurement

In this section, the tools preferred in measuring energy

consumption and which one is chosen for the experiment are

explained.

Intel Power Gadget: is a profiling tool that can used

both in macOS and Windows operating systems [30]. The

main advantage of this tool is its ability to trace CPU usage,

frequency, temperature, and power (W) through a graph that

can be converted to a .csv file. On the other hand, Intel Power

Gadget is not compatible with Linux systems.

PowerStat: is developed on Linux and can record energy

consumption as watt [31]. This tool supports the Running Av-

erage Power Limit (RAPL) interface of Intel, thereby utilizing

two types of registers including MSR PKG Energy Status3

and MSR PP0 Energy Status4. It mainly relies on telemetry

and thermal control algorithms.
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PowerTop: is an alternative profiling framework that works

on Linux systems [32]. Firstly, it requires a calibration that

finds a compromise between the machine and profiling. After

that, energy consumption data is presented in various formats

encompassing idle, device, and tunable. Further, it provides

HTML reporting.

Perf: is a specific program that can be executed on ma-

chines having Intel processor and Linux operating system [33].

Energy consumption data is saved as joule along with the

measurement count. Some components including RAM, GPU,

and core can be evaluated in terms of energy consumption.

In the experiment, PowerStat is preferred for evaluating

the threshold optimization value of energy consumption. The

main reason PowerStat is chosen is its advantageous speed in

read/write operations since it performs on .txt files. Further, it

allows users to determine time periods employed for measur-

ing energy consumption.

B. Proposed algorithm

EFOS takes a .txt file produced by PowerStat. An initial

hyperparameter value h1 is given to the algorithm for starting

optimization. Step 7 takes an energy record from the file to

configure the hyperparameter. Steps 8-11 calculates the local

optimal h2 depending on the threshold energy et. Step 14

assigns an arbitrary performance value, which is assigned to

an arbitrary performance 70% of accuracy that should be

exceeded during T iterations. Steps 15-23 calculate the second

local optimal h3, thereby utilizing a function reAssign which

either increases or decreases the local optimal by controlling

the change of the hyperparameter. Last, Step 24 returns the

ultimate performance measure along with the final value of

the hyperparameter. To create experimental codes, sparklyr
and sparktf libraries of R were utilized. RDD conversion and

other preprocessing steps were also coded with R.

IV. EXPERIMENTAL SETUP

A. Datasets

Table I presents the experimental data sets. The Dense
data set was developed for improving neural network models

in classification1. It has 30 numerical features along with a

label compatible with binary classification. Microsoft in-

cludes instances collected from a security contest and it is

publicly available2. It has 1804 numerical features (187.83

MB) that can be used for classification experiments. Payload
is collected from a research project conducted by Politecnico

di Milano University3. It has 31 numerical features which

have low churn (+10,-1) compared to the other data sets.

Santander is generated for transaction prediction of users4.

It has 140 numerical features in which the majority of them

are floating-point numbers.

1https://www.kaggle.com/c/dense-network/data?select=train.csv
2https://www.kaggle.com/muhammad4hmed/malwaremicrosoftbig
3https://zenodo.org/record/5731597
4https://www.kaggle.com/datasets/lakshmi25npathi/santander-customer-

transaction-prediction-dataset

1: Input: energy file (.txt), inital value of hyperparameter

(h1), D (Data set), iteration (T), threshold energy (et)
2: output: optimal hyperparameter, ultimate performance

3: Dt ← createFolds(D)
4: file ← read(energyfile)
5: L ← length(file)
6: h2 ← h1

7: Sd ← file[sample(1 : L, 1)]
8: while Sd < et do
9: h2 ← reAssign(h2)

10: Sd ← file[sample(1 : L, 1)]
11: end while
12: h3 ← h1

13: i ← 0
14: result ← 0.7
15: while i < T do
16: model ← train(Dt)
17: result ← test(model,Dt)
18: if (result >= max) then
19: h3 ← reAssign(h3)
20: end if
21: hoptimal ← mean(h3, h2)
22: i ← i+ 1
23: end while
24: return result, hoptimal

Algorithm 1: EFOS.

TABLE I
MLLIB DATA SETS UTILIZED IN THIS WORK.

Name Size range Category

Dense 175000 (instances) Classification
Microsoft 10868 (instances) Classification
Payload 130529 (instances) Classification

Santander 200000 (instances) Classification

B. Experimental Settings

The case study comprises five algorithms and their hyper-

parameters along with search space as follows:

• deep neural network:max iter:10:100-step size:1,

tol:1e-10:1e-06-step size:0.0001, step size:0.0001:1-step

size:0.01.

• kmeans:max iter:10:100-step size:1, tol:1e-10:1e-06-step

size:0.0001, k:2:5-step size:1.

• logistic regression:max iter:10:100-step size:1,

threshold:0.1:0.5-step size:0.0001.

• naive bayes:smoothing:1:5-step size:1, thresholds:0.1:0.5-

step size:0.0001.

• random forest:max depth:5:10-step size:1,

thresholds:0.1:0.5-step size:0.0001, num trees: 5:20-step

size:1

C. Performance measures

For deciding the optimal configuration, Algorithm 1 em-

ploys accuracy measure as follows:
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Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

where true positive (TP), true negative (TN), false positive

(FP), and false negative (FN) are the elements of confusion

matrix used in calculating classification performance. On the

other hand, total energy TE can be formulated as follows:

TE =

m∑

i=1

Pi.�t (2)

in which P represents a unique energy consumption (watt)

recorded for a specific time period �t. For m different power

usages, the computational burden of CPU is:

CPUusage =

m∑

i=1

Ui (3)

in which U denotes the identical CPU usage of a specific

task. The ultimate optimization burden Oburden can be calcu-

lated as in Equation 4.

Oburden = TE + CPUusage (4)

V. RESULTS

Optimal settings found by the proposed method are pre-

sented in Table II. It is worth noting that each algorithm

relies on specific settings depending on the data set group.

However, some hyperparameters such as max iter accurately

reflect the type of machine learning algorithm. For instance,

GLM requires a lot of number of iterations but this case does

not greatly contribute to the computational burden. On the

other hand, a Deep neural network inherently depends on

complex calculations due to the number of hidden layers. In

this respect, it necessitates less number of iterations.

TABLE II
MLLIB DATA SETS UTILIZED IN THIS WORK.

Method Optimal settings

Deep neural network max iter:55, tol:1e-6, step size:0.003
Bayes smoothing:2, thresholds:0.3

Random Forest 130529 (instances)
GLM max iter:82, threshold:0.4

Kmeans max iter:45, tol:1e-04, k:3

Figures 3-7 present a time analysis of the proposed method.

Bayes is the most preferable technique in that it does not

exceed 600 seconds up to 100 iterations as seen in Figure

3. In this algorithm, the data sets are divided into two groups

depending on the size. Further, there is no threshold for time in

increasing iterations. Figure 7 shows the time required for the

execution of the proposed method in five MLlib algorithms.

Since the Santander data set is the largest, it takes a long

time to complete optimization. Separate lines are evident in

Random Forest (Figure 6) and Deep Neural Network (Figure

7). On the other hand, this is not the case for GLM (Figure

4). 100 can be considered a boundary value for computational

burden since time starts dramatically increasing after that

value. Clustering takes less time compared to classification

as shown in Figure 5 which presents a clear churn in time

results.

Fig. 3. Tuning time analysis of Bayes.

Fig. 4. Tuning time analysis of GLM.

Fig. 5. Tuning time analysis of Kmeans.

Figure 8 shows CPU usage rates of the MLlib algorithms

employed in the tuning. It is worth noting that Kmeans has

the highest rate (up to 90%) which resulted in a remarkable

computational burden. On the contrary, deep neural network,

which is a supervised algorithm, has not exceeded 35%.

Likewise, Random Forest is the second eligible method in

terms of CPU usage. It can be concluded that unsupervised
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Fig. 6. Tuning time analysis of Random Forest.

Fig. 7. Tuning time analysis of deep neural network.

methods perform more cost-effectively in Apache Spark when

it comes to configuring hyperparameters.

VI. DISCUSSION

To make a general discussion, it is inevitable to evaluate

energy consumption along with CPU usage. Table III presents

the ultimate optimization burden which includes mean energy

consumption recorded during the tuning. GLM requires more

energy than the other algorithms due to its large computational

time. Unsurprisingly, Bayes consumes the lowest energy since

it establishes a set of tuning processes that is pruned via a

result-based inference design. Despite the fact that deep neural

networks are very complex to run, they require reasonable

energy (13kW) compared to the alternatives.

TABLE III
Oburden DETAILS OF THE EXPERIMENTAL ALGORITHMS.

Method TE CPUusage% Oburden

Deep neural network 13kW 10.2 23.2
Bayes 12kW 19.8 31.8

Random Forest 39kW 9 48
GLM 48kW 10.4 58.4

Kmeans 17kW 54.2 71.2
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Fig. 8. CPU usage analysis of the MLlib algorithms on the experimental
data sets. The measurement was performed with proc.time function of R
base library. The record was obtained via Google Console cloud computing
environment having Intel(R) Xeon(R) CPU @ 2.20GHz, 14 GB RAM, 4
CPU(s).

VII. CONCLUSION

We utilize energy footprint and accuracy to generate a

multi-objective optimization algorithm for Apache Spark. This

method instantly checks energy records to shrink hyperpa-

rameter space. Then, it seeks the highest performance mea-

sure depending on the predefined iteration. To validate the

effectiveness of the proposed method, four classification data

sets are exploited by five MLlib algorithms. The experimental

findings bolster the claim that inference-based algorithms

such as Bayes remarkably shorten tuning time in big data

processing frameworks. Although unsupervised methods are

not concerned with the features of classification data sets, they

create a significant CPU burden according to the findings.

The future agenda of this paper encompasses the following

avenues: 1) The energy measurement tools are either devised

for specific operating systems or CPU types. A flexible energy

profiling tool may be developed for Apache Spark, 2) A deduc-

tive decision-making mechanism is needed before tuning big

data systems. There are various hyperparameter optimization

techniques but few are effective in reducing data processing

time. In this context, an elimination algorithm could be used

to guide practitioners.
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