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Abstract—The research conducted in this paper targets to 

examine the efficiency of the 24-bits floating-point (FP24) format 

on data modelled by the Gaussian distribution. To accomplish this 

goal, we exploit a connection that exists between binary formats 

and quantization, so we apply the objective measures such as 

distortion and SQNR (signal-to-quantization noise ratio) to 

estimate the performance of the FP24 format. In particular, 

performance investigation of this format is performed in the 

theoretical domain for both mean-squared error (MSE) and 

absolute error (AE) measures. Results for both metrics are 

provided in the wide dynamic range of the input data variances 

and show that the SQNR is high (103.79 dB for MSE and 105.19 

dB  for AE) and varies negligibly. Therefore, the FP24 format can 

be considered as an excellent candidate for representing Gaussian 

data in practical variance-sensitive applications.  

Keywords—floating point format, Gaussian source, piecewise 

uniform quantizer, SQNR 

I. INTRODUCTION 

Various practical applications and systems support the 
floating-point (FP) format, although the implementation of the 
fixed-point (FXP) format is simpler. This is because the FP 
format, when confronted with the FXP format, can enable high 
performance (accuracy) in data representation in a much larger 
range of data variances. Codewords generated in the FP format, 
besides the sign bit, include bits that convey information about 
the exponent E and mantissa M of the real number. Different 
codeword lengths were proposed for this format so far, including 
32 [1], 24 [2], 16 [3] or 8 bits [4]. Let us recall that 32-bits FP 
version (FP32) defined by IEEE 754 standard [1] applies 8 bits 
to encode E and 23 bits to encode M. It should also be noted that 
this standardized FP version is the first choice for applications 
with large available resources (such as memory and processing 
power). However, for resource-constrained applications it is 
recommended to use the FP variants with a lower number of bits; 
for example, the 8-bits FP format is a good choice for edge 
devices.  

In [5−8], the analysis of FP and FXP formats was done using 
the equivalent quantization scheme and using SQNR as 
performance measure. That kind of analysis actually contributed 
in establishing a relationship between SQNR and accuracy in 
data representation. Namely, it was pointed out in [5−7] that the 
quantizer corresponding to the FP format is a piecewise uniform 
quantizer, while in [8] was indicated that quantizer equivalent to 
the FXP format is a uniform quantizer. In [5−7] are calculated 
performance of the FP32, FP24 (24-bits FP) and bfloat16 (16-
bits FP) format, respectively, for the data with Laplacian 

distribution, where as a performance measure a MSE metric 
[9−11] is used. It was shown in a wide dynamic range of data 
variances that all considered FP formats provides high level of 
robustness as SQNR remains unchanged with the change of data 
variance, where the best SQNR performance is observed in the 
case of FP32 format, while FP24 is better that bfloat16. The 
study in [8] performs a performance analysis using the AE metric 
[9, 10, 12, 13], where FP32 and FXP32 (32-bits FXP) formats 
were observed for Laplacian data. 

Besides the Laplacian source, the Gaussian source is also 
used as a statistical model for the data [9, 10]. Some important 
examples of data that follow the Gaussian distribution are neural 
network weights and measurement data collected from sensors 
[14]. Consequently, investigating the performance of binary 
formats for Gaussian data is significant from a practical point of 
view. 

This paper addresses the FP24 format and aims to explore its 
performance in the case of a Gaussian source from the SQNR 
point of view, which is not done before. In other words, 
following the approach from [5−7], we use the adequate 
quantization model and then take into account the variance of the 
data when investigating the performance. Specifically, we 
consider both the MSE and AE metrics in order to provide a 
detailed performance analysis. For both metrics involved, the 
efficiency of the FP24 format in processing Gaussian data is 
shown to be high, as it maintains constancy in the accuracy of 
the representation when the variance of the data changes.  

The rest of the paper is organized as follows. In Section II, 
after a short description of the FP24 format, we introduce the 
quantization scheme equivalent to this format and derive 
expressions for performance evaluation for both considered 
metrics. Section III presents and discusses theoretical results for 
the FP24 format obtained in processing of Gaussian data. Finally, 
Section IV provides concluding remarks. 

II. FP24 QUANTIZER MODEL

In this Section, the FP24 format will be described and the 
performance of the quantizer analogous to this format (FP24 
quantizer) will be evaluated for two commonly used metrics. 

A. Description of the FP24 Format and Introduction of the

FP24 Quantizer Model

Consider Fig. 1 where the binary representation of a real
number x is given in FP24 format. We can see that FP24 
codeword is composed of the sign bit ‘s’, 8 bits (e1e2 … e8)2 for 
the exponent E and 15 bits (m1m2…m15)2 for the mantissa M.  
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Fig. 1.  The binary representation of FP24 number. 

It is worth noting that E and M are integers and can be 
obtained from their binary forms as: 
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From (1) it follows that Emin = 0 ≤ E ≤ Emax = 255, while from 

(2) we have that Mmin = 0 ≤ M ≤ Mmax = 215 - 1. Using E and 
M, the decimal form of the FP24 number can be determined 
according to [1]: 

 ( ) ( )
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where E* is the biased exponent, Emin* = -127 ≤ E* ≤ Emax* = 
128.  

Observe that the FP24 format displays both positive and 
negative numbers. Since the FP24 format is zero-symmetrical, it 
follows that for each positive number there is a negative 
counterpart. The maximal positive FP24 value is xmax = 2Emax* = 
2128, while -xmax = -2128 is the maximal negative FP24 value. 
Positive FP24 numbers are divided into 256 groups, where each 
group includes 215 equidistant numbers. Note that the group is 
defined by the particular value of E*; accordingly, numbers in 
the same group are located in the range [2E*, 2E*+1], while the step 
size in the group is: 
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where E* goes from -127 to 128.  

As pointed out in [6], the FP24 quantizer is a symmetric          
N = 224-levels piecewise uniform quantizer whose support region      
[-xmax, xmax] is partitioned into 256 unequal segments [2E*, 2E*+1], 
E* = -127, …, 128, where ∆E* (see (4)) is the step size within the 
segment containing 215 quantization levels. 

In the following, we will evaluate the performance (distortion 
or equivalently SQNR) of this quantizer for two different metrics 
(MSE and AE), when the input data is described by the Gaussian 
PDF [9−12]: 
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B. Performance for the MSE Metric 

Let us introduce the granular Dg and overload distortion Dov, 
which represent the components of the total distortion D 
produced inside and outside the granular region, respectively. In 
the case of FP quantizers and MSE metric, the basic expressions 
for Dg and Dov calculation are defined as follows [5−7]: 
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where PE* denotes the segment probability. PE* for the Gaussian 
PDF can be calculated as: 

( )

* 1
* *

*

*

2 1/2 1/2

2

1 2 2
,

2

E

E

E E

E
P p x dx erf erfσ

σ σ

+

+ −    
    = = −

    
    

 . (8) 

Applying (4) and (8) in (6), we derive the following expression 
for Dg of the FP24 quantizer: 
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while for Dov of the FP24 quantizer it is obtained: 
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Using (9) and (10), we can define the expression for the SQNR 
of the FP24 quantizer for the Gaussian source:  
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 (11) 

C. Performance for the AE Metric 

For FP quantizers and AE metric, the following expressions 
can be applied for evaluation of the total distortion components 
[8]:  
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Note that ∆E* and PE* in (12) are specified with (4) and (8) 
respectively. Accordingly, we derive the following for Dg and 
Dov of the FP24 quantizer (AE metric): 
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For this performance metric, SQNR is defined with [8, 9]: 
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Substituting (5), (14) and (15) in (16), we obtain the SQNR for 
the FP24 quantizer:  
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III. NUMERICAL RESULTS AND DISCUSSION  

The performance testing of the FP24 quantizer is done in the 
theoretical domain, considering the range of data variances           
[-30dB, 30dB] with respect to the reference variance σref

2 = 1 
(data follows the Gaussian PDF). 

Let’s first look at the structure of the FP24 quantizer and 
discover which segment (specified by E* value) occurs more 
frequently for Gaussian data. Fig. 2 shows PE* versus E*, 
calculated using (8) for three specific values of σ[dB]=20·log10σ, 
i.e. for σ[dB] = -30 dB, 0 dB and 30 dB. From Fig.2, we can see 
that PE* is different from zero only in a small range of E* values. 
It can also be seen that the width of that range is the same for 
each considered σ[dB], while the range shifts to the right as σ[dB] 
increases.  
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Fig. 2.  Dependence of PE* on E* for FP24 quantizer and Gaussian PDF. 
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Fig. 3.  Performance of the FP24 quantizer over a wide dynamic range of 
variances for MSE metric. 

To compute the SQNR of the FP24 quantizer in the 
previously determined range of variances we used (11), and the 
results are presented in Fig. 3. Note that the achieved SQNR is 
high and changes negligibly in this range as the SQNR dynamics 
∆SQNR (i.e. the difference between the maximal (SQNRmax) and 
minimal SQNR (SQNRmin) values) is only 0.04 dB; so, it follows 
that the FP24 quantizer is robust. Based on this fact, we report 
that, in the case of Gaussian data, change in variance causes a 
negligible impact on the accuracy of the FP24 format.   

In Fig. 4 is provided the SQNR of the FP24 quantizer for the 
AE metric, that is determined according to (17). It can be noted 
that the results for this metric differ from those for the MSE 
metric presented in Fig. 3. From Fig. 4, the robustness of the 
FP24 quantizer can be easily ascertained, as SQNR preserves 
stability in the whole range (the SQNR dynamics is ∆SQNR  = 
0.016 dB). In this way, we reconfirmed that the performance of 
the FP24 format is independent on data variance.  
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Fig. 4.  Performance of the FP24 quantizer across a wide dynamic range of 
variances for AE metric. 

 

TABLE I.  THE OBTAINED RESULTS FOR FP24 FORMAT FOR DIFFERENT 

MEASURES AND GAUSSIAN SOURCE 

Metric SQNRmax [dB] SQNRmin [dB] ∆SQNR [dB] 

MSE 103.7883 103.7492 0.0391 

AE 105.1955 105.1791 0.0165 

 

In Table I are provided performance details of the FP24 
format for both observed measures. 

To summarize, based on the SQNR analysis, a high 
efficiency of the FP24 quantizer in Gaussian data processing is 
observed. Hence, it is worth implementing FP24 format in 
applications where Gaussian data occurs and where the variance 
of the data is a variable parameter. 

IV. CONCLUSION 

In this paper, the analysis of the FP24 format in the presence 
of data described by the Gaussian distribution was provided. 
Specifically, the performance of this format was investigated 
through an equivalent quantization scheme (called the FP24 
quantizer which is actually a piecewise uniform quantizer) and 
two different performance measures (MSE and AE), where 
adequate expressions were derived in both cases. It was shown 
that the FP24 quantizer is robust, as a high value of SQNR along 
with its negligible change in a wide dynamic range of data 
variances was observed for both MSE and AE metrics. This 
achievement makes the FP24 format highly efficient in 
representation of different Gaussian data, since the SQNR and 
the accuracy of the binary formats are directly related. Note that 

the robustness property is very important and can be a critical 
factor from the angle of practical implementation, especially in 
applications which are sensitive to changes in data accuracy and 
have large resources (memory, processing power, etc.) at 
disposal. Future work will include the implementaion of this 
format in neural networks, as neural network parameters (e.g., 
weights) can be statistically modelled by a Gaussian distribution. 
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