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Abstract—Outlier detection plays a crucial role in 

identifying anomalous data points within datasets. While 

unsupervised methods have been widely used for this task, 

situations may arise where a dataset is known to contain no 

outliers for a specific task. In such cases, semi-supervised outlier 

detection algorithms become imperative. This paper presents a 

comprehensive analysis of multiple semi-supervised outlier 

detection techniques. The study evaluates these algorithms 

across diverse datasets, considering variations in feature 

dimensionality, sample size, and outlier prevalence. As a main 

contribution, this study provides valuable insights into the 

strengths and limitations of semi-supervised outlier detection 

algorithms, aiding researchers and practitioners in selecting 

suitable methods for outlier detection tasks. 
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I. INTRODUCTION

Outlier detection is a task of identifying a subset of data 
points that differs from other instances and is therefore 
assumed anomalous. An established approach for identifying 
anomalies within a dataset involves employing unsupervised 
methods such as local outlier factor (LOF) [1], angle-based 
outlier detection [2], and isolation forest [3]. However, 
situations may arise where we are confident that our dataset 
contains no outliers for a specific task. In such scenarios, it 
becomes prudent to explore alternative solutions tailored to 
such tasks, leading us to semi-supervised outlier detection 
algorithms. Semi-supervised outlier detection methods aim to 
identify anomalous data points in a dataset where only a 
portion of the data is labeled. We assume that our dataset 
solely comprises normal data samples (inliers). Therefore, our 
goal is to develop a model that can differentiate between new 
instances that follow the patterns of these normal samples and 
those that deviate as anomalies. 

This study gives an exhaustive analysis of several semi-
supervised outlier detection techniques across diverse 
datasets, explaining their efficacy and intricacies. Through a 
rigorous evaluation, the paper compares these methods, 
outlining their respective merits and limitations. Therefore, it 
provides valuable insights for selecting suitable methods in 
outlier detection tasks. 

II. RELATED WORK

A. Dimensionality Reduction for Outlier Detection

A methodology for outlier detection involves leveraging
dimensionality reduction techniques. The core concept 

revolves around employing dimensionality reduction on a 
dataset comprising predominantly of inliers, thereby obtaining 
a condensed representation of the data. Subsequently, upon 
reconstructing the compressed data, outliers exhibit a notably 
higher reconstruction error compared to the inliers. While 
Principal Component Analysis (PCA) stands as a 
conventional choice for dimensionality reduction, 
autoencoders emerge as a more adaptable solution due to their 
ability to capture intricate data patterns. Autoencoders are 
proficient in learning the latent compressed representation of 
data, manifested through the output of the middle-hidden layer 
characterized by significantly fewer nodes than the input 
layer. The network is trained to minimize the reconstruction 
error, which in turn defines the outlier score. The use of neural 
networks for dimensionality reduction is discussed in [4], [5]. 
Studies have demonstrated that simplistic autoencoder 
architectures yield results akin to PCA [6]; however, deeper 
and more intricate architectures offer superior reconstruction 
capabilities. For instance, a deep autoencoder can distill a 784-
pixel image into merely six real numbers, a feat unattainable 
with PCA alone [5]. This heightened capacity renders 
autoencoders exceptionally adept and precise for outlier 
detection tasks. 

B. Local Outlier Detection via Graph Neural Networks

Local outlier methods like LOF [1] and DBSCAN [7] have
gained popularity owing to their simplicity, interpretability, 
and competitive performance compared to deep learning-
based approaches. Despite their effectiveness, these methods 
often lack adaptability and struggle with hyper-parameter 
optimization, limiting their performance on diverse datasets. 
To address these limitations, [8] introduces a novel method 
called LUNAR (Learnable Unified Neighborhood-based 
Anomaly Ranking). LUNAR aims to unify local outlier 
methods under a message passing framework, leveraging the 
capabilities of graph neural networks to enable learnability. 
Unlike traditional approaches, LUNAR constructs k-NN 
graphs for any tabular dataset, utilizing node distances as input 
and employing a learnable message aggregation function. 
Moreover, to train the model effectively, negative samples are 
introduced to prevent trivial solutions, thereby facilitating the 
learning of a decision boundary between normal and 
anomalous samples. By incorporating these advancements, 
LUNAR offers a promising approach to anomaly detection 
that addresses the shortcomings of existing methods, 
particularly in terms of adaptability and performance 
optimization. 
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C. Isolation Forests for Semi-Supervised Outlier Detection

Initially designed for unsupervised detection, isolation
forests (iForest) [3] have demonstrated efficacy in semi-
supervised outlier detection. Within an isolation forest, 
isolation trees, structured as binary decision trees, recursively 
delineate partitions within a dataset by randomly selecting 
attributes and partitioning the data accordingly until all 
instances are singularly isolated. This stochastic partitioning 
yields trees wherein paths to anomalies are notably shorter 
than those leading to normal data instances, attributed to the 
scarcity of anomalies and their distinctiveness in attribute 
values. Consequently, collective shorter paths to individual 
data samples across the forest signify a high likelihood of 
anomaly presence. Notably, iForest exhibits rapid 
convergence in detection performance with a minimal 
number of trees, alongside the ability to attain high detection 
efficiency with modest sub-sampling sizes. Moreover, 
iForest demonstrates scalability to address extensive datasets 
and high-dimensional problems characterized by numerous 
irrelevant attributes. 

Furthermore, the original paper proposing isolation 
forests underscores their applicability in semi-supervised 
tasks. Empirical results indicate a marginal decrease in 
detection performance when anomalies are excluded from 
training data, as evidenced by small reductions in AUC (Area 
Under the Curve). However, employing larger sub-sampling 
sizes mitigates this reduction, yielding AUC recoveries when 
anomalies are omitted from training. 

III. EVALUATING SEMI-SUPERVISED OUTLIER DETECTION 

METHODS 

This section delves into investigating semi-supervised 
outlier detection algorithms across diverse datasets, 
enlightening their strengths and weaknesses across various 
use cases. 

A. Methodology

When assessing different outlier detection algorithms like
iForest, Autoencoder, and LUNAR, the first step is to divide 
the dataset into separate training and testing subsets. For semi-
supervised outlier detection techniques, it's crucial to ensure 
that the training subset exclusively comprises inliers (i.e., 
normal data instances), while the testing subset incorporates 
both inliers and outliers. To ensure this delineation, a stratified 
70-30 partitioning scheme is employed, predicated upon the
classification labels present in the dataset. Subsequently,
outlier instances are excised from the training subset, thereby
yielding a testing subset characterized by a consistent ratio of
outliers to normal instances as observed in the original dataset.
This approach is essential for obtaining statistically
meaningful outcomes.

For each method under examination, the initial phase 
includes training the model utilizing the designated training 
set, which exclusively comprises inliers. Subsequently, these 
trained models are employed to predict outlier scores. 
Through rigorous comparison with ground truth labels, we 
proceed to compute the Receiver Operating Characteristic 
Area Under the Curve (ROC AUC) score and the accuracy, 
thereby quantifying the effectiveness of the model. In order to 
conduct a comprehensive evaluation of model performance, 
we systematically measure both the training duration and the 
inference time, the latter pertaining to the processing time 
required for the test set evaluation. 

In all experimental evaluations, the pyOD [10] outlier 
detection library in Python was employed. Specifically, the 
iForest algorithm leverages the scikit-learn [11], [12] 
implementation as its underlying framework, while the 
Autoencoder model utilizes TensorFlow framework [13] for 
its implementation. 

B. Model architectures

The iForest configuration comprises 100 isolation trees
with a subsampling size of 256. The Autoencoder architecture 
consists of seven hidden layers, with six layers housing 16 
neurons each, and a central layer containing 4 neurons, all 
utilizing the ReLu activation function. Training the 
Autoencoder will be executed over 25 epochs. Additionally, 
the LUNAR algorithm will be employed with the parameter 
𝑘 = 5. Uniformity will be maintained across all datasets by 
employing identical model architectures and hyperparameters. 

C. Benchmark Datasets

The previously mentioned outlier detection methods are
assessed using diverse datasets sourced from the ADBench [9] 
benchmark repository. The subset of ADBench datasets used 
for this evaluation is shown in Table 1. These datasets contain 
labeled samples denoting both anomalous and normal 
instances. Notably, the datasets exhibit variations in feature 
dimensionality, sample size, and outlier prevalence. This 
experimental design facilitates a comprehensive evaluation of 
algorithmic performance across a spectrum of outlier 
detection scenarios. 

TABLE I. BENCHMARK DATASETS USED FOR EVALUATION 

Dataset name # samples # features % anomalies 

fault 1941 27 34.67 

Ionosphere 351 32 35.89 

landsat 6435 36 20.71 

letter 1600 32 6.25 

magic 19020 10 35.16 

mammography 11183 6 2.32 

mnist 7603 100 9.21 

musk 3062 166 3.11 

optdigits 5216 64 2.88 

PageBlocks 5393 10 9.46 

pendigits 6870 16 2.27 

Pima 768 8 34.9 

satimage-2 5803 36 1.22 

SpamBase 4207 57 39.91 

Cardiotocography 2114 21 22.04 

IV. RESULTS AND DISCUSSION

This section presents results for various metrics and 

delves into the mechanisms underlying the performance of 

different algorithms across diverse benchmark datasets. 

A. Quantitative Results

Figure 1 depicts a schematic representation of Receiver
Operating Characteristic Area Under the Curve (ROC AUC) 
scores obtained from an evaluation of various semi-
supervised outlier detection algorithms across diverse 
benchmark datasets. Notably, the LUNAR algorithm 
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demonstrates commendable and consistent performance 
across all datasets, emerging as the top performer in the 
majority of cases. While the Autoencoder algorithm exhibits 
competitive performance akin to LUNAR, occasionally 
surpassing it, particularly evidenced in the Cardiotocography 
dataset, it also demonstrates notable performance 
discrepancies, evident in datasets such as: optdigits, letter, 
landsat, and fault. Conversely, the iForest algorithm 
generally yields inferior results compared to LUNAR, albeit 
maintaining relative competitiveness. A noteworthy 
observation is the marked consistency of iForest's 
performance across datasets, contrasting with the fluctuating 
performance of the Autoencoder, where iForest achieves 
comparable results to LUNAR in instances where the 
Autoencoder falters. 

 

Fig. 1. ROC AUC scores of different outlier detection algorithms on 

multiple benchmark datasets.  

Table 2 presents the F1 and Accuracy scores for the 
specified algorithms. It is apparent that all algorithms 
demonstrate comparable performance across various 
evaluation metrics. Notably, the F1 score highlights instances 
where the Autoencoder and iForest algorithms exhibit 
significant shortcomings, particularly evident in datasets such 
as letter and optdigits. 

TABLE II.  F1 AND ACCURACY SCORES FOR DIFFERENT OUTLIER 

DETECTION METHODS. 

Dataset 
iForest Autoencoder LUNAR 

F1 Acc. F1 Acc. F1 Acc. 

fault 0.551 0.636 0.462 0.609 0.613 0.736 

Ionosphere 0.700 0.717 0.705 0.708 0.792 0.811 

landsat 0.354 0.707 0.224 0.669 0.532 0.806 

letter 0.081 0.858 0.033 0.879 0.417 0.942 

magic 0.605 0.665 0.540 0.636 0.712 0.788 

mammography 0.322 0.964 0.292 0.961 0.387 0.973 

mnist 0.441 0.875 0.556 0.887 0.633 0.931 

musk 0.278 0.943 0.644 0.965 0.795 0.984 

optdigits 0.047 0.948 0.000 0 0.793 0.985 

PageBlocks 0.527 0.877 0.614 0.901 0.708 0.944 

pendigits 0.369 0.960 0.407 0.969 0.904 0.995 

Pima 0.498 0.563 0.571 0.675 0.576 0.502 

satimage-2 0.656 0.988 0.600 0.986 0.615 0.986 

SpamBase 0.688 0.698 0.682 0.683 0.707 0.753 

Cardiotocography 0.543 0.751 0.581 0.784 0.578 0.830 

 

It is important to note that unlike the iForest and LUNAR 

algorithms, which typically demonstrate robust performance 

with minimal hyperparameter tuning, the Autoencoder 

method necessitates tailored construction for each specific 

task. In this study, the Autoencoder utilized consists of seven 

hidden layers, with six layers comprising 16 neurons each and 

the central layer containing four neurons. Particularly on 

datasets with a higher dimensionality, employing a larger 

Autoencoder with increased neuron count in the central layer 

may yield superior outcomes. This inherent sensitivity to 

neural network architecture poses a limitation of the 

Autoencoder method, as it may excel on certain datasets 

while underperforming on others, emphasizing the necessity 

for meticulous architecture selection. In contrast, Isolation 

Forests and LUNAR offer the advantage of consistent and 

satisfactory performance across diverse scenarios, obviating 

the need for extensive hyperparameter experimentation. 

B. Time Performance Evaluation 

The training and testing were performed exclusively 
using the CPU, without the aid of hardware accelerators. 
Table 3 gives the training durations of various algorithms 
across diverse datasets. Notably, the training time for the 
iForest algorithm is markedly trivial compared to that of both 
the Autoencoder and LUNAR models. This discrepancy 
stems from the isolation forest's linear time complexity, 
tailored to efficiently process expansive datasets while 
maintaining superior performance. Conversely, the 
autoencoder and LUNAR methods necessitate substantially 
longer training periods, surpassing 30 seconds for certain 
instances. Typically, Autoencoders demanded less time than 
LUNAR in these tests, although this is dependent the specific 
architecture employed. 

Another crucial performance metrics to consider is the 
inference (i.e. test) time, denoting the duration required to 
process the test dataset, i.e., the time taken to discern whether 
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a new instance qualifies as an outlier. These times are 
displayed in Table 3. 

TABLE III.  TRAIN AND TEST TIME FOR DIFFERENT OUTLIER DETECTION 

METHODS (THE TRAIN TIME IS GIVEN IN SECONDS AND THE TEST TIME IN 

MILLISECONDS). 

Dataset 

iForest Autoencoder LUNAR 

Train 

(s) 

Test 

(ms) 

Train 

(s) 

Test 

(ms) 

Train 

(s) 

Test 

(ms) 

fault 0.09 4 4.53 73.9 3.80 20.5 

Ionosphere 0.11 2 3.03 61.4 1.52 7.1 

landsat 0.16 9 7.56 120.1 11.49 24.4 

letter 0.12 3 4.01 72.3 4.14 4 

magic 0.19 21 12.89 227.7 28.26 352.8 

mammography 0.15 13 11.16 170.4 32.46 123.9 

mnist 0.24 16 12.98 177.1 23.26 56 

musk 0.18 7.5 8.70 129 10.63 19 

optdigits 0.18 10 9.27 140.4 17.16 28.1 

PageBlocks 0.18 13.2 9.58 175.6 16.64 41 

pendigits 0.21 15.5 8.67 125.8 16.09 25 

Pima 0.11 2 3.26 64.1 2.27 2 

satimage-2 0.13 8 8.63 133.2 19.03 25.8 

SpamBase 0.15 7.5 6.68 133.4 9.28 14 

Cardiotocography 0.17 5 5.61 122.7 6.68 6 

As anticipated, the iForest method consistently exhibits 

the shortest inference time (test time). Conversely, the 

Autoencoder tends to require the most time across various 

scenarios, attributable to the depth of the neural network 

utilized. Analogous to earlier observations, distinct 

architectures may yield diverse performance outcomes. 

Notably, the LUNAR model demonstrates remarkable speed 

across numerous datasets, with inference times often 

comparable to those of the isolation forest. However, on 

larger datasets like the magic dataset, the inference time for 

outlier scores notably escalates, with even the Autoencoder 

outperforming in terms of efficiency. 

V. CONCLUSION

In this paper, we embarked on exploring semi-supervised 
outlier detection algorithms, recognizing the importance of 
tailored solutions for tasks where outliers are absent within 
the available dataset. We summarized various methods for 
outlier detection, that work on problems where the 
knowledge of normal data samples is available. Our 
investigation focused on several popular methods such as 
iForest, Autoencoders, and LUNAR. 

Analyzing the results obtained, it became evident that the 
LUNAR method consistently performed exceptionally well 
across diverse datasets and application domains, showcasing 
its efficacy in outlier detection tasks. However, a notable 
limitation surfaced - its extensive training duration compared 
to other methods, which can pose a practical challenge in 
real-world applications. On the other hand, autoencoders 

demonstrated promise in delivering good results, although 
with a caveat: their sensitivity to model architecture demands 
meticulous customization for optimal performance tailored to 
specific datasets. Isolation forest method emerged as a 
reliable contender, providing consistently favorable results 
across various scenarios. Although it often fell short 
compared to LUNAR, its unparalleled speed and 
effectiveness, particularly with large datasets, underscore its 
significance in practical settings.  

For future work, there is a promising avenue in exploring 
additional semi-supervised algorithms across a broader 
spectrum of datasets. Furthermore, delving deeper into 
refining model architectures, particularly focusing on 
autoencoders, holds potential for enhancing performance and 
adaptability in outlier detection tasks. By undertaking this 
line of research, we aim to further advance the field of semi-
supervised outlier detection and address existing challenges 
to bolster its applicability in diverse domains. 
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