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Abstract—Widely used in automotive safety, industrial au-
tomation, and surveillance, Frequency-Modulated Continuous-
Wave (FMCW) radar provides accurate object tracking (OT).
Kalman filter (KF)-based algorithms are proven to work reliably
in industry for OT with FMCW radar. Extending the KF
functionality, Probabilistic Data Association Filter (PDAF) is a
method that also enables the association of detected reflections
with the observed target. Integrated PDAF (IPDAF) offers
formulations for both the probability of track existence and data
association simultaneously. This paper shows how parameters for
IPDAF tracker can be selected to optimize the OT. First, FMCW
radar is simulated to generate precise distance, velocity, and
angle measurements through a multiple-input multiple-output
(MIMO) antenna setup providing ground-truth labeled data.
Next, a practical method for calculating optimal tracking pa-
rameters (OTP), particularly for short-range applications, based
on Optuna optimizer is introduced. This method aims to improve
tracking accuracy in scenarios such as indoor environments and
pedestrian safety systems, considering scenarios with different
target movement maneuvers and different dynamic movement
models.

Index Terms—FMCW radar, radar simulation, object tracking,
IPDAF, Optuna optimization

I. INTRODUCTION

Selecting OTP for an OT is crucial as it directly impacts

the accuracy and reliability of tracking results, ensuring ef-

fective monitoring across diverse scenarios. Sensors based on

acoustic waves and radars offer privacy and cost-effectiveness.

Human OT benefits from radar’s ability to penetrate visual

obstructions, making it suitable for surveillance in challeng-

ing environments. Radar-based tracking provides enhanced

situational awareness in scenarios where visual conditions

This work was supported by Novelic.

are poor or obstructed, such as low light, dense foliage, or

adverse weather [1]. Moreover, radars are good at detecting

micro motions like vital signs, which significantly increases

the detectability of low Signal-to-Noise Ratio (SNR) targets

[2]. Additionally, radar systems can detect multiple targets

through signal modulation and MIMO systems, enhancing

their versatility in tracking scenarios.

Different radar modeling approaches in the literature address

specific aspects of radar systems, from environment modeling

to limited building block representations [3]. However, recent

radar modeling literature has shown a lack of focus on radar

hardware and system modeling. This is solved in [4], where

an extensive radar model is introduced. Important aspects of

the radar simulation are an equivalent receiver gain and a

noise figure (NF). In [5], it is shown how the NF should be

interpreted generally, while [6] suggests that the receiver can

be modeled with an equivalent gain and NF. For the selection

of necessary parameters in this work, the TI IWR6843 radar

datasheet [7] is used.

Besides radar parameters, the type of target used in the

simulation influences the reflected signal significantly with its

Radar Cross-Section (RCS). The focus of this paper is on sim-

ulating and tracking human targets. Pedestrian’s 360 degrees

radio wave reflection characteristics were measured with 76-

GHz radar in [8] where it was shown that the average RCS

is -8.1 dBsm with fluctuations of more than 10 dBsm. RCS

for pedestrians at different angles was modeled with Weibull

distribution in [9] based on 79-GHz radar measurements, while

[10] additionally considers 24-GHz radar measurements with

human targets in different poses and clothes. Almost linear

RCS dependence on carrier frequency was reported in [11],
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while moving targets’ RCS was analyzed in [12].

KF is a recursive Bayesian filter suited for single-target

state estimation under linear models and Gaussian noise, being

at the same time one of the earliest approaches for online

tracking [13]. In target-tracking applications, multidimensional

gates, also called validation regions, are constructed in a

measurement space to enable the association of reflections

with the target of interest. Additionally, validation minimizes

the need for an exhaustive search across the measurement

space. PDA is a well-established technique for data association

and tracking [14]. However, it assumes the existence of a track,

which limits its ability to provide track existence probability

information. To overcome this limitation, different approaches

were introduced with a focus on track observability [15]

and a combination of multiple model approach with PDA

[16]. In contrast, IPDA redefines PDA without assuming track

existence initially [17] offering expressions for both track ex-

istence probability and data association simultaneously. IPDA

maintains computational efficiency like PDA while achieving

better performance.

The purpose of our research is to determine the OTP of

the IPDAF tracker for people tracking. It is shown how the

received radar reflection can be modeled with a few param-

eters for the radar components, signal propagation through

the environment, and targets. To obtain relevant optimization

results, trajectories of the target’s movement were simulated in

different ways to cover all demanding situations for tracking

people with radars known from practice. A loss function for

one set of parameters is defined as the mean loss for all

trajectories and based on the loss, Optuna optimizer [18] is

run to select OTP.

II. RADAR SIMULATION

The basic principle of FMCW radar involves transmitting

a signal with a frequency that linearly increases or decreases

over time (chirp) [19]. When this signal encounters an object,

a portion of the energy is reflected to the radar receiver. By

comparing the frequency of the transmitted signal with the

frequency of the received signal, the radar can determine the

range (r) of the object. Radial velocity (v) information can

be extracted by transmitting multiple chirps closely separated

in time [19]. Modern FMCW radars utilize MIMO antenna

arrays to enable Angle of Arrival (AOA) estimation of the

detected targets, including azimuth (φ) and elevation (θ)

angles. Therefore, each detected target is described by four

directly measured parameters 〈r, v, φ, θ〉. Extending the vector

with the SNR and forming a list of all detected targets results

in a radar point cloud (PC).

To circumvent the need for simulating radar signals at

high frequencies and individually modeling components within

the transmitting and receiving radar chains, the simulation

focuses on generating received baseband signals. This involves

defining simulation parameters encompassing radar configura-

tion, radar parameters, and target characteristics, specifically

tailored for detecting moving human targets within a 10-

meter range. The radar configuration, including transmitter and

receiver parameters, is detailed, while the target’s movement

trajectory is determined based on the initial position, speed,

and acceleration profile.

A. Radar configuration and parameters

Using the Time-Division Multiplexing (TDM) technique

[20], the simulation facilitated signal separation from different

transmitting (TX) antennas by the receiving (RX) antennas.

The selection of radar configuration parameters is contingent

upon factors such as the target type, expected dynamics,

environmental conditions, and the designated detection zone.

Target dynamics significantly influence parameters governing

maximum achievable speed and speed resolution. Specifically,

the maximum speed of the target is inversely proportional to

the time interval between successive chirps emitted by the

same TX antenna, while increasing the number of chirps per

antenna improves speed resolution. Additionally, the detection

zone dictates the maximum target distance, which, in turn,

influences the choice of Analog-to-Digital Converter (ADC)

selection frequency, with the maximum distance proportional

to the frequency component post-range Fast Fourier Transform

(FFT). In this simulation, a complex sampling mode labeled

”complex1” was employed, as defined in the TI documentation

[21]. Furthermore, the chirp bandwidth determines distance

measurement resolution. Key radar configuration parameters

can be summarized as: central frequency Fc = 60GHz, total

chirping time Tc = 50.5μs, total idle time Tidle = 7μs,
total bandwidth BW = 3.099GHz, number of TX channels

NTX = 3, number of RX channels NRX = 4, number

of chirps Nc = 32, number of ADC samples per chirp

Nadc = 256 and sampling frequency Fs = 5.9MHz.

The radar is approximated with a few parameters to ob-

tain realistic SNR values of observed targets to simplify

the analysis. A sufficient set of parameters includes gains

of the transmitting Gt and receiving antennas Gr and the

equivalent characteristics of the receiving chain, which is

represented as a black box and defined by three parameters:

equivalent gain (Ge = 36dB), NF (F = 12dB) and bandwidth

(Be = 5.9MHz). Gt and Gr are both given with (1) for

θ ∈ [−90◦, 90◦], where Gmax = 12dB.

G(θ) ∼ N (20 log10 (cos (0.01309θ) + 0.01) , 0.09)

Gt(θ) = Gr(θ) = Gmax +G(θ)−max
θ

(G(θ)).
(1)

The equivalent model of the receiving chain is excited by the

received useful signal, which represents the reflection of the

transmitted signal from the target, and thermal noise of spectral

density kT , where k is the Boltzmann constant and T is the

temperature at the receiver input in Kelvin. A nominal value

of 290K is chosen for T . The model of the receiving chain

introduces additional noise into the system, which is modeled

by the degradation of the input SNR and modeled by NF.

Therefore, the output noise power of the receiver chain model

is equal to the sum of the input thermal noise propagation

contribution and the model’s noise, assuming that they are

uncorrelated.
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On the other hand, the NF can be seen as a value by

which the input spectral density of the thermal noise power

kT should be multiplied to produce the output noise equal to

the sum of the propagated and intrinsic noise after propagation

through the noiseless receiving chain. Thus, the spectral noise

power density at the input becomes kTF , while the output

thermal noise power is equal to kTFBeGe [10, 11]. A useful

signal is also propagated through the receiver chain model.

Considering that the frequency components of the useful signal

are within the receiver’s bandwidth Be, the useful signal is

affected only by the gain Ge. Provided that the antenna and

receiver impedance are ideally matched and equal to 50Ω, the

signal and noise output peak-to-peak values can be estimated

from the receiver chain model as:

Vspp =
√
2 · 4 · PSR10

Ge
20 , (2)

Vnpp =
√
2 · 4 · kTFeBeR10

Ge
20 , (3)

where Vspp is the output peak to peak signal value, Vnpp

is the output peak to peak noise value, Ps is the input signal

power given by the radar equation (4).

B. Targets in the radar environment

In the context of short-range radar systems designed for

pedestrian detection, the operating environment comprises

both stationary clutter, such as urban infrastructure and natural

elements, alongside dynamic entities like pedestrians, pets,

cyclists, and vehicles. Radar waves, upon transmission, interact

with these surroundings, reflecting off objects and returning to

the radar’s receiver. The radar equation (4) is used to calculate

the power of the received signal in radar systems, helping

determine the effectiveness of the radar in detecting targets

against background clutter and noise. This equation accounts

for parameters including transmitted signal power Pt, antenna

gains (Gt and Gr), wavelength (λ), radar cross-section (σ),

and target range (R), ultimately determining the power of

the received signal (Pr) at the radar’s receiver antenna [22].

Additional environmental losses are neglected.

Pr =
PtGtGrλ

2σ

(4π)3R4
. (4)

In (4), the reflected signal power is directly proportional

to a target’s RCS. The target of interest in the simulation is

a pedestrian. The wavelength of the simulated radar is small

compared to the target’s dimension. This complex target can

be seen as a collection of individual reflecting scatterers [22].

Viewing aspect of the target can vary over time as the target is

moving. Even small changes in the viewing aspect can result

in huge RCS variations. Using the results from [8], RCS of

the target is modeled according to:

RCS ∼ N (−8, 16) (5)

OTP are estimated for moving targets in the radar environ-

ment. The simulation sampling period (Δt) is equal to the du-

ration of one radar frame, which is 80 ms. This is a relatively

short time interval for a significant change in the dynamics of

the human target’s movement. Accordingly, a simulation of the

target’s trajectory was performed based on the parameters of

the trajectory profile: initial position 〈x0, y0〉, initial velocity

〈vx0, vy0〉, acceleration profile 〈ax(t), ay(t)〉 and simulation

time Δt, as follows:

vx(t) = vx(t− 1) + ax(t− 1)Δt

vy(t) = vy(t− 1) + ay(t− 1)Δt

x(t) = x(t− 1) + vx(t)Δt

y(t) = y(t− 1) + vy(t)Δt.

(6)

III. OPTIMAL TRACKING PARAMETERS

This chapter explains the tracking procedure used for a

target state estimation in the presence of clutter and the

optimization method for selecting the OPT.

A. IPDA tracker

PDAF is a practical estimator that includes data association

for one target in the presence of clutter. This estimator is

based on the minimum mean square error (MMSE) approach

and estimates the conditional probability distribution of the

target state in each estimation step. PDA algorithm computes

association probabilities between validated measurements and

the target being tracked, incorporating Bayesian information

to handle measurement origin uncertainty. It utilizes a KF for

linear state and measurement equations, transitioning to an

Extended KF (EKF) when equations are nonlinear in the PDAF

tracking algorithm [14].

Starting from the assumption that only one target is present

in the zone of interest, the evolution of the system state in

time can be approximated by

x(k) = F (k − 1)x(k − 1) + v(k − 1), (7)

where the measurements coming from the target are de-

scribed with

z(k) = H(k)x(k) + w(k). (8)

In the equations (7) and (8), v(k − 1) and w(k) are zero-

mean mutually independent, white Gaussian noise sequences

described with known covariance matrices Q(k − 1) and

R(k). It is further assumed that the track has been initialized.

Gaussian posterior is used to describe the past information

about the target. In each tracking step, a validation region is set

in the measurement space around the predicted measurement.

The candidate measurements are selected and if the target

was detected with a probability of detection PD, then only

one of the gated measurements can originate from the target.

The remaining reflections are assumed to be independent and

identically distributed with uniform spatial distribution [14].

The PDA principle is a basis for estimation algorithms that

additionally include modeling of the track existence.

IPDA used for OT based on the simulated reflections from

the targets models the existence of a track using a Markov

process, relating the probability of the target’s existence at
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time k to the probability that the target does not exist at the

same time as follows [17]:

P (xk) = p11P (xk−1) + p21(1− P (xk−1))

1− P (xk) = p12P (xk−1) + p22(1− P (xk−1)),
(9)

where P (xk) represents the probability of track existence at

scan k while probability that the track does not exist at scan

k is modeled as 1− P (xk).
The coefficients describing the probabilities of transition

from state to state of the model satisfy the rule:

p11 + p12 = p21 + p22. (10)

In [17], it is further shown that starting from modeling

the existence of the target, following the steps of prediction,

association, and estimation, the same formulas that apply to

the original PDAF filter [14] are reached. Fig. 1 shows the

steps with the corresponding formulas for IPDA tracker based

on the Markov chain defined in (9).

State prediction

Measurement
prediction

Innovations
estimation

Association
Probabilities
estimation

Combined
Innovation
estimation

State
Estimation

Covariance of

Innovation
covariance

Filter Gain

Covariance of

Fig. 1: One cycle of the IPDA filter.

At radar scan k, the matrix H(k) is defined in (11) and the

rest of the expressions from Fig. 1 can be found in [17].

H(k) =
∂h

∂x

∣∣∣∣
x(t|t−1)

h(x, y) =

⎡
⎢⎣

√
x2 + y2

tan−1(x, y)
xẏ+yẏ√
x2+y2

⎤
⎥⎦

(11)

B. Optuna optimizer

Optuna is a next-generation hyperparameter optimization

framework that employs a ”define-by-run” methodology [18].

This approach, along with a Tree-structured Parzen Estimator

(TPE) is a significant development in Bayesian optimization

techniques [23]. It allows dynamic definition and adjustment

of hyperparameters during runtime, which contrasts traditional

static configurations. This flexibility is crucial for complex

models, where OTP may be identified based on intermediate

feedback during the model’s performance.

In Optuna, the process of evaluating different sets of hy-

perparameters is organized into ”trials” and ”studies”. Each

trial tests a specific set of hyperparameters within the defined

search space and is assessed by an objective function that is

defined to maximize or minimize its output. A study includes

multiple trials to determine the optimal hyperparameters that

maximize the performance of the objective function. Addition-

ally, Optuna incorporates advanced pruning mechanisms like

the Asynchronous Successive Halving Algorithm (ASHA),

which allocates minimal initial resources to each trial and

prunes less promising ones based on performance metrics at

designated checkpoints, optimizing resource use [24].

IV. RADAR SIMULATION AND TRACKING RESULTS

Before starting the Optuna optimizer to obtain the OTP of

the IPDAF tracker, it is necessary to simulate the target’s

movement in the area of interest (AOI). Parameters of the

radar, signal propagation through the environment, and target

are presented in the previous chapters. Based on these pa-

rameters and profiles of trajectories of the target’s movement,

optimization data is collected for each radar frame in the

form of a PC and corresponding ground truth positions. The

PC originates from a conventional radar processing pipeline

depicted in Fig. 2.

Receiver path

RX
antenna

Reflected
signal FFT

processor
Clutter

removal

FFT
processor

Raw
data

Non-
Coherent

Integration

CFAR Angle FFT

Range
FFT

Doppler
FFT

Detections

Point
cloud

y

x

Fig. 2: Radar processing pipeline used for generating the PC.
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Fig. 3: Examples of different trajectories used for generating

optimization data.

The FFT is applied to the received chirps to determine the

range of detected objects (Range FFT). The next step involves

static clutter removal, which eliminates reflections from the

non-moving objects in the environment. Again, FFT is used

to estimate the velocity of the detected objects by applying

FFT across chirps. Non-coherent summation of Doppler FFT

results in a Doppler map. The Doppler map is an input to the

detection block based on the two-stage Constant False Alarm

Rate (CFAR) [22] algorithm. Two-stage CFAR utilizes two

standard CFAR detectors: one for rows and one for columns

of the Doppler map. A third FFT is used to estimate the angle

of arrival of the detected points. SNR is estimated as a ratio

of signal amplitude and noise level estimated in the CFAR.

The resulting array of points represents the PC.

In addition to multiple possible reflections from the tar-

get, the PC can also contain reflections from clutter. Clutter

is evenly spread throughout the observation region and its

quantity follows a Poisson distribution pattern with a spatial

density of λ = 0.02 clutter points per square meter. Clutter is

not added directly to the PC, but is also simulated as a radar

reflection from a certain number of interfering targets with the

SNR high enough to pass the detection threshold of CFAR.

Achieving valid optimization results hinges on the quality of

the collected data, which is influenced by both the movement

patterns of the target and the amount of clutter in the AOI.

Therefore, great attention is paid to the variety of target motion

and includes the following situations: (a) straight-line motion

at constant speed horizontally and vertically, (b) straight-line

motion at constant speed radially toward the radar, (c) motion

at constant speed with random turns, (d) motion with random

stopping, (e) moving along a circular trajectory. Cases (a)-(e)

are shown in Fig. 3. The total number of generated trajectories

(Nt) is 35.

Tracking parameters are optimized using a loss function that

measures the mean Euclidean distance between the estimated

target state and the ground truth position. Let N(k) be the

total number of frames in k-th trajectory. Starting from the

mean square error (MSE) for a k-th trajectory (12),

MSE(k) =
1

Nc(k)

Nc(k)∑
i=1

|x̂(i) − x
(i)
gt |2, (12)

where Nc(k) is the number of frames in which the track

was confirmed, x̂(i) is the state estimation in the i-th frame,

and x
(i)
gt is the ground truth position in the i-th frame, the loss

function for a single trajectory (13) is defined as the ratio of

MSE(k) and Nc(k). Thus, the loss defined in (12) is further

reduced by the number of frames with the confirmed track.

L(k) =
1

Nc(k)
MSE(k). (13)

The overall loss (14) is defined as the mean value of losses

for the entire set of trajectories.

Lt =
1

Nt

Nt∑
i=1

L(k) (14)

Consider a nearly constant velocity (CV) or constant ac-

celeration (CA) model in two dimensions with the following

parameters:

Qcv = Qcv,0 · qcoeff,

Qca = Qca,0 · qcoeff,

R = Rcv = Rca = diag(r211, r
2
22, r

2
33)

Pcv(0|0) = diag(p20,00, p
2
0,11, p

2
0,22, p

2
0,33)

Pca(0|0) = diag(p20,00, p
2
0,11, p

2
0,22, p

2
0,33, p

2
0,44, p

2
0,55),

(15)

where T is equal to the radar frame cycle and diag is

the notion for a diagonal matrix with all elements equal

to zero except the ones on the main diagonal provided in

brackets. Next, Qcv and Qca are process noise covariances

for CV and CA respectively, Qcv,0 and Qca,0 are derived

from the direct discrete-time kinematic model [17], Pcv(0|0)
and Pca(0|0) are initial state covariances for CV and CA

respectively, while R is the measurement covariance. The

rest of parameters from (15) are optimized together with

coefficients from the Markov model (9), detection probability

PD [14], and the initial probability of track existence Pte.

The space in which parameters are optimized is defined with

qcoeff ∈ [0.1, 30], r11 ∈ [0.01, 0.5], r22 ∈ [0.01, 0.2], r33 ∈
[0.1, 3], p0,00 ∈ [0.1, 10], p0,11 ∈ [0.1, 10], p0,22 ∈ [0.01, 10],
p0,33 ∈ [0.01, 10], p0,44 ∈ [0.001, 10], p0,55 ∈ [0.001, 10],
PD ∈ [0.8, 0.99], Pte ∈ [0.2, 1], p11 ∈ [0.7, 1], p21 ∈ [0, 0.4].

Optimization was conducted for both CV and CA target

motion models. Table I summarizes the mean losses for each

trajectory class, as well as the total mean loss for each model.

Given mean losses values should be divided by 1000 to reach

the original values. The results indicate that employing a

simple CV model suffices for tracking individual targets in

clutter without sacrificing performance. This conclusion is
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supported by Fig. 4, which illustrates the tracking results of

reference positions for both CV and CA models.

TABLE I: Mean losses for each trajectory class and the total

mean loss for each model.

Trajectories
A B C D E Total

CV 1.279 1.639 1.142 0.729 0.476 1.021
CA 1.283 1.791 1.180 0.709 0.488 1.046
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Fig. 4: Tracking results for the selected optimal parameters for

maneuvering targets.

V. CONCLUSION

This paper investigates the selection of OTP for human

tracking by utilizing the Optuna optimizer. The loss function

for the complete optimization dataset was defined as a mean

value of individual losses for each trajectory. The dataset was

collected in the FMCW radar simulation, which modeled the

radar with its transmitter and receiver parameters. Propagation

of the signal through the environment was modeled with

the radar equation not considering radar losses due to the

small detection zone. Human target trajectories were created

to cover challenging tracking scenarios for the radar. IPDAF

tracker was selected for OT since it consists of a fully

integrated method for track initiation, data association, and

track smoothing. Following optimization and the application

of a basic CV model, our system robustly achieves diverse

maneuver objectives in cluttered environments, demonstrating

its effectiveness.
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