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Abstract—The corona discharge in the cylindrical geometry is 

numerically simulated for the negative lightning voltage impulse. 

The simulation is performed by solving the drift-diffusion-

reaction equations for the electrons, the positive and the negative 

ions. The results for the concentration of charge particles and the 

intensity of the electric field are used to determine the corona 

current which is in turn necessary for the calculation of the 

transient overvoltages on the transmission lines.  

 

Index Terms—Corona, lightning overvoltage, transmission 

lines, QV curve 

 

I. INTRODUCTION 

 

Corona is the unwanted effect caused by overvoltages on 

the transmission lines. There are two significant types of 

overvoltages in power systems: lightning overvoltage 

produced by lightning flashes and switching overvoltage 

produced by switching breakers or disconnecting switches [1]. 

The level of the transient overvoltage determines the 

insulation design. Therefore, the accurate calculations of the 

transient overvoltages are necessary for the designing of the 

insulation coordination in order to minimize the cost of the 

construction.  

It is important to include the effect of the corona in the 

calculation for the propagation of voltage or current pulses 

along the transmission lines. Corona discharge causes the 

attenuation and the distortion of the pulse. Amplitude of the 

pulse will be clamped down to the corona threshold at the 

front of the pulse and the portion of the pulse whose 

amplitude is larger than the corona threshold will propagate 

with the speed less than the speed of light [2].  

The effects of the corona discharge are nonlinear. Without 

corona, the dependence of generated charge from the applied 

voltage is linear and their ratio is a capacitance of the 

transmission line. If the voltage is high enough, the corona 

will be formed around the conductor and the charge will start 
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to leak in the surrounding space which makes the charge-

voltage function nonlinear. This function is represented by the 

charge-voltage (QV) curve which can be used to define the 

dynamical capacitance. The QV curve can be determined 

experimentally by measuring the charge during the discharge 

in the cylindrical geometry [3]. Also, different engineering 

models for the corona are proposed which can be used to 

evaluate the QV curves [4]. 

The aim of this paper is to propose the method to take into 

account the effect of the corona generated by negative 

lightning overvoltages. The idea is to simulate the corona 

discharge in the cylindrical geometry under the negative 

lightning voltage impulse by using the drift-diffusion-reaction 

equations. Then the QV curve can be calculated and used to 

determine the dynamical capacitance which figures in the 

transmission line equations.  

 The overvoltages caused by lightning can be induced by 

direct or nearby strokes. The time evolution of lightning 

effects is described by lightning impulse which is 

characterized by a small rise time reaching its maximum in a 

few microseconds and decaying in a few tens of 

microseconds. The standard lightning impulse 1.2/50 µs can 

be expressed in analytical form by the sum of two Heidler’s 

functions which are used for the reproduction of the lightning 

current wave-shape [5]. 

II. THEORY 

A. The corona discharge 

The time evolution of the space densities of the charged 

particles during the discharge is usually described by drift-

diffusion-reaction equations [6] given by 
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where en , pn  and nn  are the densities of the electrons, the 

positive and the negative ions, respectively. On the right hand 

side of these equations the terms representing the gain and the 

loss of the particles due to ionization, attachment and 
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recombination described by the coefficients  , ,  , 

respectively, are given. Further 
eW , pW  and 

nW  are the 

velocities of the electron, the positive and the negative ion 

drifts, respectively. The fluxes of charged particles are given 

by 
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where 
e  is the flux of the electrons, p  and 

n are the 

fluxes of the positive and the negative ions, respectively, D  is 

the diffusion coefficient for the electrons. The values of the 

transport and the reaction coefficients depend on the value of 

the electric field intensity at each point. Therefore the 

continuity equations (1), (2) and (3) are coupled with the 

Poisson equation using the potential   
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Another effect that must be taken into account to the 

negative corona discharge is the emission of the electrons due 

to the positive ion impact with the cathode. The flux of the 

electrons on the surface of the cathode is given by 
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which is used as boundary condition in the numerical 

simulations. Here,   is the ion-secondary emission 

coefficient. Its value does not depend much on the type of the 

cathode material, therefore the usual value 0.01   is 

adopted. 

B. The total charge density 

If the concentrations of the charge particles and the 

electric field intensity are calculated, the total line charge 

density is 
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where pI  is the current per cylinder length, obtained from 

Sato-Morrow [7] formula 
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Here p e n     , dS rdrd  is the cross section of the 

elementary surface in the cylindrical coordinate system, pV  is 

the voltage impulse and 
LE  is the Laplacian electric field 

representing the electric field that would exist between the 

electrodes if there was no generated space charge. For the 

coaxial wire-cylinder configuration one obtains 
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where 1R  and 2R  are the wire and the cylinder radii, 

respectively. The expression for pI  becomes 
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The first term in (12) is the current component due to charge 

motion in the ionized gas. The second term is the capacitive 

current component which flows through the cylindrical 

capacitor due to the time varying voltage.  

The total line charge density obtained by (9) is the total line 

charge that is flown through the external circuit since the time 

onset of the voltage impulse. It can be also calculated in a 

different way. It can be considered as the sum of two 

components 
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where Q  is the corona charge in the space between the 

electrodes and CQ  is the charge residing on the central wire 

both per the cylinder length. The Q  component can be 

calculated when the space charge  p e ne n n n    over the 

cross section is integrated. The value of the CQ component 

enables that the integral of the total electric field is equal to 

the applied voltage at any time. 

The total electric field at the outer cylinder can be 

calculated now as  
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Two charge components can be now calculated as  
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C. The transmission line equations 

The voltage induced on an overhead wire above the ground 

can be calculated using the transmission line equations [2]  
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where V  and I  are the voltage and the current along the line, 

L  and C  are the line inductance and the line capacitance, 

respectively, and corI  is the corona current line density. In the 

cylindrical geometry one can obtain the time dependence for 

the corona current  corI t  as a time derivative of the corona 

line charge density 
corq  which is the difference between the 

total charge calculated by (13) and the charge 0 pC V  in the 

cylindrical capacitor without the corona   
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where  0 0 2 12 lnC R R  is the line capacitance. 

In order to determine the corona charge for the wire of 

radius 1R , we need to assume the value for radius of the outer 

cylinder 2R  for the calculations. The value of the radius 2R  is 

chosen so that the electric field does not reach the critical 

value for the ionization at that distance. Further, the amplitude 

of the voltage impulse should be assumed so that the electric 

field around the central wire corresponds to the expected field 

around the overhead wire. 

For the sake of the simplicity, it is assumed that the corona 

current at each line segment is identical in magnitude and 

shape, so 
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where c is the speed of light.  

III. RESULTS AND DISCUSSION 

We have simulated the discharge between the wire of 

radius 1 5 mmR   and the cylinder of radius 2 40 cmR  . The 

outer cylinder is grounded and the standard negative lightning 

voltage impulse whose amplitude is 267 kV is applied to the 

central wire. This configuration have been used in the 

experiments performed by Cooray [4]. The experimental 

measurements of the QV curves for different amplitudes of 

the positive and the negative lightning voltage impulses are 

presented in that study enabling the comparison of our results 

to the measured values. Cooray [4] also proposed a simple 

engineering model for the QV predictions that is widely used 

in the literature.  

The time evolution of the total charge density is presented 

in Fig. 1 with the components CQ  and Q . Also, the charge 

of the cylindrical capacitor without corona 0 0 pQ C V  is 

shown. In the beginning of the discharge the total charge 

density is equal to 
0Q  until the corona starts to disturb the 

Laplacian electric field and it contains only the CQ  

component. When the positive ions start to leave the inter-

electrode space through the cathode approximately at 0.8 s , 

the CQ  component decreases abruptly and the Q  component 

becomes dominant until the end of the simulation. 

When the charge reaches its maximum value at 8 s , the 

CQ  component decreases to zero value and later becomes 

positive. This is due to the decreasing value of the negative 

applied voltage. 
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Fig. 1.  The line charge density and its components 
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Fig. 2. The calculated QV curve 
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Fig. 3.  Corona current density 

 

The calculated QV curve (Fig. 2.) is in a good agreement 

with the experimental measurements presented in [4] and it 

has maximum value of about 5 C . In the rise portion of the 

voltage impulse the relation between the Q and V is linear. 

The linear dependence stops when the voltage reaches the 

value of 130 kV. It is the moment of the corona inception. The 

curve has hysteresis because the charge accumulated in the 

inter-electrode space during the rise portion of the voltage 

remains  in the system or decreases slower than the voltage. 

 Finally, the calculated corona current density is shown in 

Fig. 3. In the beginning it has a negligible value until the 

corona inception starts. Then a very narrow pulse occurs and 

its value decreases to zero. 

IV. CONCLUSION 

The determining of the QV curve is necessary in order to 

include the effects of the corona in the calculation of transient 

lightning overvoltages. Various engineering models are 

proposed for the evaluation of the QV curve based on very 

simplified physical assumptions of the discharge process. In 

this paper, we have simulated the corona discharge by solving 

the drift-diffusion equations directly without any constraints. 

The results show a good agreement with the available 

experimental data. They can be used for further studying of 

the corona discharge and its effect on the voltage pulse 

propagation along the transmission lines.  
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