
 

Abstract—Correct association of observations with objects is 

one of the most important and difficult tasks in algorithms for 

tracking multiple targets in the presence of false observations. 

We consider one modification of the standard Kalman filter 

which aims to reduce the tracking error by explicitly taking 

into account the fact that the probability of correct association 

is less than one. Through computer simulations, we analyze the 

performance of this method and assess if, and under what 

conditions, it can improve upon the standard Kalman filter.  

Index Terms—Target tracking, Kalman filtering, Correct 

correlation probability, Data association.  

I. INTRODUCTION

RESEARCH in field of automatic target tracking started 

in the 1970s. Back then, the interest in this topic was driven 

mainly by aerospace applications: radar, sonar, navigation, 

guidance and air traffic control. Today, multiple target 

tracking (MTT) techniques are used extensively in many 

diverse arenas, such as image processing, oceanography, 

autonomous vehicles, robotics and biomedicine [1]. Many 

approaches to MTT have been proposed in the literature 

over the years. The main difference between them is in the 

way they solve the two main tasks which make up any MTT 

problem: filtering and assignment.  

The task of filtering is to provide (preferably optimal) 

estimations of a state vector consisting of positions, 

velocities and possibly accelerations of individual targets, 

given some noisy measurements. Most commonly, Kalman 

filters (KF) are used for this purpose [3]. If the dynamics of 

the target or the mapping from states to measurements are 

described by non-linear functions, techniques other then the 

KF must be employed. These include the extended KF, 

unscented KF or particle filters [1, 2].  

The sequence of estimates for one individual target 

constitutes a track. Assignment of observations to tracks is 

the second major task in MTT. Ideally, in each scan, every 

target produces exactly one observation. Even then, it might 

not be trivial to decide which observation originated from 

which target (if targets move in clusters, for example). 

Moreover, there is always the possibility that a target will 

not be detected in one or more scans, or that false detections 

might occur. There are several ways to tackle this problem. 

Typically, a prediction for the value of the state at time   is 

made. Next, we define a region around the prediction, called 

the gate, in which we expect to record the next observation. 

If no observations are actually found within this gate, then 

we have a track with a missing observation. Otherwise, if 
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the gate includes only one observation, we assign it to the 

considered track. Finally, if there are multiple observations 

within the same gate, we must decide which of them should 

be associated with the current track. The easiest way to do 

this is the sequential nearest neighbor (SNN) method. It 

consists of computing statistical distances between each 

possible prediction-observation pair at each scan, and 

choosing the assignment which minimizes the overall 

distance. The simplicity of SNN makes it appealing from a 

practical viewpoint. However, since only data from the 

current scan are considered, it is prone to miscorrelation – 

the erroneous assignment of extraneous observations to 

tracks, which results in poor tracking. The probability of 

miscorrelation can be reduced if we are willing to defer the 

final assignment decision until we obtain data from the next 

several scans. This is the basic idea behind the track 

branching and multiple hypothesis testing approaches [3], 

but these are not the focus of the present paper. 

Several techniques have been proposed to account for the 

possibility of miscorrelation in the basic SNN method [3]. 

We consider one such methods, based on modifying the 

state and error covariance matrix estimates [4]. Obviously, if 

no miscorrelation occurs, modifying the estimates can only 

deteriorate the performance, since in this case the 

(unmodified) KF attains the minimum mean-squared error. 

This poses the following question: is the use of the method 

from [4] indeed justified and under what circumstances? 

The aim of this paper is precisely to provide an answer to 

this question. 

In the remainder of this paper, we assume a KF-based 

MTT scheme with SNN assignment. We ignore the 

problems of track initiation, confirmation and deletion, and 

assume that the number of targets is constant and known in 

advance. We further assume that targets are detected 

independently of each other with some constant probability 

  in each scan, and that there is a non-zero probability of 

false detections (observations not originating from any of 

the targets). 

In the following section, we describe the basic MTT 

scheme in more detail. Then, in Section III we review the 

miscorrelation-mitigating technique from [4]. In Section IV 

we analyze the performance of these techniques through 

computer simulations. The final section concludes the paper. 

II. BASIC OPERATION: GATING, ASSIGNMENT, FILTERING

Consider a target moving along the  -axis with unknown 

acceleration and assume that measurements   of its position 

  along the axis are sampled with period  . The 

corresponding state-space model is given by: 

(1) 

(2) 
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where   and   are independent zero-mean, white Gaussian 

processes of known variances   
  and   

 , modeling the 

unknown target accelerations and measurement noise, 

respectively,   is the state vector  

(3) 

(we use bold upright characters to denote vectors and 

matrices), and the matrices   and   are given by 

(4) 

Obviously, real-life targets move in 3 dimensions, but since 

the accelerations along each axis are typically regarded as 

mutually independent, it is numerically more convenient to 

consider three separate 2D models than one 6D model [3]. 

For the sake of clarity, we ignore the movement of targets in 

the other two dimensions from now on, noting that the 

required generalizations for the 3D case are trivial. 

 The general solution to the recursive, minimized mean-

squared error estimation problem of the linear model (1)-(2) 

is given by the Kalman filter [5]: 

(5) 

(6) 

(7) 

(8) 

(9) 

where  is the predicted state at time   given the 

observations up to time  ,  is the final estimation 

at time  ,  denotes the estimation error covariance matrix, 

 is the Kalman gain, and 

(10) 

When   targets are being tracked simultaneously, we have 

  KFs running in parallel. We denote the estimates of the 

 -th filter as     and    . 

A. Prediction and gating

Starting from the state and error covariance estimates

from the previous scan at time    , the predictions are 

computed from (5)-(6) for all tracks. The predicted positions 

are                   . Assuming for a moment that the 

observations have already been properly assigned to each 

track, the variance of the  -th residual   
is given by 

(11) 

where denotes the (1,1) element of the covariance 

matrix. 

An observation   is said to be within the gate of track   if 

(12) 

where is the gating constant. For a typical choice of 

  , the theoretical probability of a valid observation 

satisfying the gating test is 99.97%, assuming a Gaussian 

error model. Therefore, all observations outside the gate can 

safely be eliminated as candidates for assignment to the 

current track.  

B. Assignment

We now return to the problem of pairing observations   ,

 , with tracks (note that the number of 

observations    need not equal the number of tracks  , due 

to missed detections and false alarms). The likelihood 

function associated with the assignment of the  -th 

observation to the  -th track is [3] 

(13) 

SNN assignment can now be posed as a problem of 

maximizing the     terms, which is equivalent to minimizing 

the following squared distances: 

(14) 

The optimal assignment is found by enumerating over all 

possible assignments and determining the one with the 

minimal sum of squared distances. Gating simplifies the 

procedure, since it eliminates a priori the combinations 

which violate the gating constraint. 

C. Filtering

Let binary values    be equal to 1 if some observation was 

paired with the  -th track, and 0 otherwise. For those tracks 

which had observations assigned to them, the update is 

given by (7)-(9). As for the remaining tracks, whose gates 

did not contain any observations, we have no choice but to 

set the final estimates to be equal to the predicted values. It 

can be shown that the error covariance matrix remains 

bounded, provided that the probability of missed 

observations is  below a certain critical threshold [6]. 

Mathematically, the update step is given by 

(15) 

(16) 

where  is the observation associated with the  -th track. 

III. ACCOUNTING FOR MISCORRELATION

It has been suggested in the literature that miscorrelation 

represents an additional source of error that should be 

accounted for in the KF covariance matrices [3]. In this 

section we describe one such technique from [4], and in the 

following section we assess if it indeed does improve the 

quality of tracking.  

Let     be the probability of correct correlation, i.e. that 

the observation associated with a track truly did originate 

from the tracked target. Define the modified state estimate 

to be 



 

 

                              (17) 

 

(we have omitted the subscript   and the dependence on time 

  for notational convenience). This new value is the linear 

combination of two estimates: the first is computed 

assuming correct correlation, and the second corresponds to 

the case of a missed observation. The resulting covariance 

matrix is shown to be [3] 
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where                , and allows for the increase 

in the covariance as a function of the difference in the 

estimates provided by the two correlation alternatives.  

The implementation of (17) and (18) requires the 

knowledge of    . A simple way of approximating this 

probability is given by [7]: 

 

      
   

             
  
     

 (19) 

 

where   represents the new observation density, i.e. the 

expected number of new observations (true targets or false 

alarms) that arise per unit volume per unit scan time, and    

is the number of tracks for which the gating condition is 

satisfied. In other words,      is the ratio of the likelihood 

associated with the chosen observation-to-track assignment 

to the sum of the likelihoods associated over all possible 

assignments for that observation (see [3] for an intuitive 

explanation on the use of minimization in the denominator). 

IV. SIMULATION RESULTS AND DISCUSSION 

Throughout this section, we denote the original KF as 

algorithm A1, and the modification given by (17)-(18) as 

algorithm A2. The test case is a single object moving in a 

plane, along a trajectory shown in Fig. 1. The total duration 

of the experiment was 150 seconds, with a sampling period 

of 1 second. Target dynamics correspond to those of a 

military aircraft, with speeds of 300 m/s and accelerations of 

up to 2G. 

 
Fig. 1.  True trajectory of the tracked target. 

 

At each scan, a response from the true target is received 

with probability     , and false observations appear with 

some density  . Although only one target is present, there is 

still the possibility of none to several observations being 

received within the gate at each scan. SNN was used for 

data association. 

Figs. 2 and 3 show the true and estimated values of the x 

coordinate for each of the two algorithms. The parameters 

were              and       . Rather than estimating 

the correct correlation probability     on-line, we adopted a 

fixed value of         for algorithm A2. 

 

 
Fig. 2.  Performance of the standard Kalman filter. 

 

 
Fig. 3.  Performance of the modified Kalman filter. 

 

Figs. 4 and 5 show the mean squared errors of A1 and A2, 

given by 

 

 

  
 

 
                              

 

   

 (20) 

 

as a function of     (the operation of A1 is independent of 

    and thus its mean squared error curve is flat in both 

figures). Detection probability was kept at a constant value 

of       . Results in Fig. 5 were obtained for      

     . They show that the performance of A2 improves for 

high values of    , but is constantly worse than that of A1. 

This can be attributed to a relatively low density of false 

alarms in this case - since the possibility of miscorrelation is 

rare, it is better to ignore it altogether, which is precisely 



 

what A1 does. 

 
Fig. 4.  Mean squared errors for         . 

 

In Fig. 6 the false observation density was increased to 

          . As expected, the performance of A1 

deteriorates due to the higher number of false observations. 

It is interesting to note that A2 is still inferior to A1 for most 

of the values of    , but for          A2 actually 

outperforms A1. This emphasizes the importance of 

properly choosing     and suggests that special care must be 

taken to construct an effective way of estimating this 

parameter on-line. 

 
Fig. 5.  Mean squared errors for         . 

 

V. CONCLUSION 

The paper analyzes the possibility of improving the 

performance of Kalman filters for target tracking, in the 

presence of both missed detections and false observations 

originating from noise, clutter etc. Modifications of the 

basic KF algorithm, which explicitly account for the 

possibility of imperfect data association, have the potential 

to improve tracking performance. However, their 

performance strongly depends on the proper choice of the 

probability of correct correlation. The simplest approach is 

to choose a constant value a priori, but a wrong choice can 

actually lead to a significant deterioration in performance 

compared with the standard, non-modified Kalman filter. It 

is therefore crucial to have reliable methods for on-line 

estimation of this key parameter. 
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