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Abstract—In this paper we present a Laplacian pyramid
construction method that uses four coefficient kernel. This approach
is motivated by the possible processing time reduction compared
to the standard five coefficient kernel approach. The method was
evaluated on clinical medical images, as a part of a radiography
image processing framework. Results were compared to the ones
obtained with the standard Laplacian pyramid. Experimental
evaluation shows that comparable results can be obtained without
introducing processing artifacts. It was shown that this approach
uses 50 % less operations than the original one. Even when
compared to an advanced binomial processing scheme, it was shown
that operation count reduction of 12.5 % can be achieved.

Index Terms—Digital radiography, Laplacian pyramid, medical
image processing, multi-scale processing

I. INTRODUCTION

DIGITAL radiography images are obtained by flat panel
detectors (FPD) which have a response that is linearly
proportional to the incidental x-ray intensity [1]. This results
in very low contrast in unprocessed images, making them
practically unusable for radiologists. An example image
demonstrating the previous statement is shown in Fig. 1. Image
appearance can be improved through the use of image processing
algorithms.

Radiography image processing algorithms should address
several issues. Image contrast should be enhanced in a manner
that allows the radiologist to distinguish the density differences
between different anatomies and structural differences within one
anatomy. Detail visibility should be enhanced to a level that
allows differentiation of small structures as they can potentially
be malignant. Including noise reduction should be considered as
enhancement algorithms tend to increase the noise prominence
in the images [2]. Finally, radiography images are large in size
(around 9 megapixels for diagnostic x-ray [3] and 12 to 25
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Trg D. Obradovića 6, 21000 Novi Sad, Serbia (e-mail: sinisa.suzic@uns.ac.rs).
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Fig. 1. Example unprocessed image.

megapixels for digital mammography, depending on detector size
[4]) thus the processing speed is a practical concern that must
be addressed.

Multi-scale approaches for radiography image processing
have attracted the attention of the community in the past
decades. Authors of [5] proposed Laplacian pyramid (LP) [6]
image decomposition and nonlinear mapping of the pyramid
pixel values for image contrast amplification. Another LP
based algorithm was proposed in [7]. This approach uses
nonlinear mapping of pyramid pixels and proposes density
and local activity adaptive processing for noise containment.
Mammography image contrast enhancement through discrete
dyadic wavelet transformation was proposed in [8]. Another
wavelet based approach for chest radiographs enhancement was
proposed in [9]. Nonlinear nature of the coefficient mapping,
both for LP and the wavelet approaches, produces artifacts. These
artifacts were addressed in [10]–[12]. Solutions for processing
artifacts reduction were proposed in [13] and [14]. Comparison
of LP and wavelet transform approaches showed that nonlinear
mapping of LP produces less processing artifacts [15].

In each of the previously mentioned image processing
approaches only noise and enhancement objectives were
addressed, without serious consideration of processing time
reduction. In this paper we analyze the LP that is constructed
using a four coefficient filter instead of the standard five
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coefficient one, motivated by possible processing time reduction.
Although it is noted that processing artifacts can be avoided
(or reduced to a satisfactory level) by standard LP approaches
[15], the conclusion might not stand for the proposed approach.
For the purpose of validation, the new approach was embedded
into a radiography image processing framework. Results were
compared to the ones produced by the same framework using
standard LP.

Section II explains the Laplacian pyramid construction
algorithm. Constraints imposed on the low-pass filter used
for the pyramid construction are outlined in Section III.
Selection of coefficient values for the proposed filter and the
obtained processing time reduction are analyzed in Section IV.
Radiography image processing framework used for evaluation is
explained in Section V. Results obtained on clinical images are
outlined in Section VI. Section VII concludes the paper.

II. LAPLACIAN PYRAMID

LP was originally proposed in [6] as a method for image
compression. Pseudo code that depicts the process of LP
calculation is shown in Fig. 2 where N is the number of pyramid
layers, and i denotes the ordinal number of the layer.

Input: original image I
1: GP0 ← I
2: lpf ← low − pass filter kernel
3: for i = 0 to N − 1 do
4: GPi+1 = convolution(GPi, lpf)
5: GPi+1 = downsample(GPi+1)

6: ĜPi = upsample(GPi+1)

7: ĜPi = convolution(ĜPi, lpf)

8: LPi = GPi − ĜP i

9: end for
10: Res = GPN

Fig. 2. Laplacian pyramid pseudo code.

First step in LP construction is low-pass image filtering as
the preprocessing step for image downsampling. First LP layer
is an image that represents the difference between the original
image and its low-pass filtered and downsampled version. As
the downsampled image size does not correspond to the original
image size, the image will be upsampled before subtracting
from the original image. Downsampled image can be further
low-pass filtered and downsampled, allowing the repetition of
the previously explained process of LP layer construction. In
this way, a sequence of different sized images is obtained. As
the algorithm uses downsampling by a factor of 2, every image in
the sequence will have 4 times less pixels than the previous one
(2 times less for each image axis). This size change is the reason
why the sequence is called a pyramid. It should be noted that the
sequence of the low-pass filtered and downsampled images also
forms a pyramid which is called the Gaussian pyramid (GP).
By convention, first layer of the GP is the original image. Thus,

the LP is a sequence of error images, each being the difference
between two layers of the GP.

Original image can be reconstructed from the LP and the last
layer of the GP, which will be called the residual image, Res.
Pseudo code that explains the original image reconstruction is
shown in Fig. 3. Adding the last LP layer to an upsampled
residual image will produce the second to last GP layer.
This process can be repeated iteratively, leading to the perfect
reconstruction of the original image.

1: for i = N − 1 to 0 do
2: Res = upsample(Res)
3: Res = convolution(Res, lpf)
4: Res = Res+ LPi

5: end for
Fig. 3. Original image reconstruction pseudo code.

Only one low-pass filter is used in the process of image
decomposition and image reconstruction, and its characteristics
are analyzed in Section III. Our objective is to investigate the
repercussions of substituting the standard 5x5 filter with an 4x4
coefficient filter.

Every image in the LP can be interpreted as image that
represents details of different scales. Various radiography image
enhancement algorithms are based on this assumption [5], [7].
In this paper we used the reference processing framevork from
[14], explained in section V.

III. LOW-PASS FILTER DESIGN

In the original LP paper [6] authors propose 5x5 spatial filter.
This filter is separable, i.e. can be obtained as a convolution
of one row (or column) filter and its transposed version. This
filter was designed as a generating kernel w(x) in a hierarchical
discrete correlation (HDC) scheme proposed in [16]. Purpose
of this algorithm is to aid the computation of local signal
properties through correlation with different sized operators.
Author proposes an iterative procedure:

g0(x) = f(x)

gt(x) =

m∑
i=−m

w(i)gt−1(x+ irt−1), t > 1
(1)

where r, a positive integer, is the order of hierarchical
correlation. Iteration t determines the layer gt(x) in the HDC
hierarchy of input image f(x). Kernel w(i) has length k =
2m+ 1, i.e. kernel size is odd.

Constraints imposed on generating kernel w(i) are:

• normalization
m∑

i=−m

w(i) = 1

• symmetry w(x) = w(−x) for all x



• unimodality w(x1) ≥ w(x2) ≥ 0 for 0 ≤ x1 ≤ x2

• equal contribution
m∑

i=−m

w(j + ir) = constant (= 1/r), for

all j, 0 ≤ j < r

Equal contribution constraint ensures that every sample in the
original sequence f(x) contributes with equal weight to every
gt(x) of the HDC.

For generating kernel of even width the definition of HDC (1)
is modified:

g0(x) = f(x)

gt(x) =

m−1∑
i=−m

w(i+
1

2
)gt−1(x+ (i+

1

2
)rt−1), t > 1

(2)

Generating kernel w(x) is defined at intermediate values, i.e.
x = ...,−1/2, 1/2, 3/2, ... If (rt − 1)/(r − 1) is even, gt(x) is
defined for integer x, and if not, it is defined at intermediate
values like the w(x). It should be noted that in this paper we
will use r = 2 (as it is used for pyramids), thus gt(x), t > 0
will always be defined at intermediate values.

Constraints imposed on the even generating kernel are the
same as for the odd one. For kernel of width 4:

w(−1

2
) = w(

1

2
) = a

w(−3

2
) = w(

3

2
) = b

2a+ 2b = 1

a ≥ b ≥ 0

(3)

This leads to [16]:

b =
1

2
− a

a ∈ [
1

4
,
1

2
]

(4)

As seen from (4), a is a free parameter that can be chosen
form a set of values.

IV. KERNEL COEFFICIENT VALUE SELECTION

It was shown in [17] that the use of the binomial kernels
can significantly reduce the computational burden for pyramid
calculation in comparison to the originally proposed kernels [6].
Substitution of the original kernel with a binomial K̂5(n) was
proposed:

K̂5(n) =
1

16
(δ(x) + 4δ(x− 1) + 6δ(x− 2)

+4δ(x− 3) + δ(x− 4))
(5)

where δ(x) is the signal with unit value for n = 0 and zero
value for n 6= 0.

Operations count reduction was achieved through successive
addition of image pixels values as the binomial kernel can be
obtained through repeated convolution of the two coefficient
kernel K̂2(n):

K2(n) =


1, n = 0

1, n = 1

0, otherwise

K̂2(n) =
1

2
K2(n) =


1
2 , n = 0
1
2 , n = −1
0, otherwise

(6)

Note that kernel K̂2(n) is the normalized version of the
binomial kernel K2(n). Convolution with K̂2(n) corresponds
to addition of adjacent sample values (convolution with K2(n))
and normalization through multiplication with 1

2 . Thus, filtering
some signal x(n) with K̂m, where m ≥ 2 represents the number
of normalized binomial kernel coefficients, can be expressed in
an iterative way:

x1(n) = x(n)

xi(n) = xi−1(n) ∗K2(n)

x(n) ∗ K̂m = (
1

2
)(m−1)xm(n)

(7)

Motivated by the previous, we investigate a four coefficient
kernel:

K̂4(n) =
1

8
(δ(x) + 3δ(x− 1) + 3δ(x− 2) + δ(x− 3)) (8)

It should be noted that K̂4(n) is a valid generating kernel for
the DHC. Normalization, unimodality and symmetry constraints
are satisfied by design. Proving the equal contribution property
can be done through setting the value a = 0.375 in (4). It is
interesting to note that the generating kernel analysis in [16]
showed that setting a to approximately 0.37 will produce a result
most similar to the Gaussian filter.

Number of additions in this approach is the same as when
filtering with a generating kernel. This approach, however,
does not perform multiplications, except the one used for
normalization. This multiplication can be done after all of
the convolutions, as shown in (7). In this way, only one
multiplication is used per signal sample in contrast to five used
in the original approach. For image processing, this filtering is
done twice, as the 2D kernel is separable. If the normalization
multiplication is done after the convolution processing, only one
multiplication can be done instead of two (one for each 1D
kernel). Hence, proposed approach uses 50 % less operations
per pixel that the original one, that is 8 additions (4 for
each 1D filtering) and one multiplication for normalization
instead of 8 additions and 10 multiplications (4 additions and
5 multiplications for each 1D filtering).



As explained, binomial filtering uses less operations than
the original approach. Therefore, we compare binomial kernels
whose widths are four and five. Number of operations performed
in filtering using the even kernel is 12.5 % lower compared to
using the odd one because the number of additions per image axis
is decremented by 1. It should be noted that this implementation
requires iterative memory readouts as each convolution is
calculated based on the result of a previous one. This might
be impractical if memory readout speed is low compared
to processor clock speed. In such case, one could use an
implementation based on the ”multiply–accumulate” operation
common in digital signal processing, or use a straightforward
implementation that uses coefficients listed in (5) or (8). Even
then, the reduction of 20 % in the number of operations is still
present as the even kernel has one coefficient less.

V. RADIOGRAPHY IMAGE PROCESSING

Radiography image processing algorithm used in our research
is composed of several steps and corresponds to the reference
framework presented in [14]. The firsts processing step is
high dynamic range compression of the unprocessed image.
Logarithm operator was chosen for the compression task as it
produces the image in which the pixel intensity is inversely
proportional to anatomy density. LP decomposition was used
as the basis for detail amplification and contrast enhancement.
LP coefficients from different layers were mapped using the
sigmoidal function:

L̂P i(x, y) = Ci(
1

1 + e−kiLPi(x,y)
− 1

2
) (9)

where LPi(x, y) are the LP coefficients at layer i, x and y are the
spatial coordinates, L̂P i(x, y) are the enhanced LP coefficients,
Ci and ki are constants that depend on the pyramid layer level.

This approach increases the value of the low absolute value
coefficients, corresponding to detail enhancement for lower level
LP layers, and to local contrast enhancement for higher level
layers. Another useful characteristic of the sigmoidal function is
that the high absolute value coefficients will be reduced, resulting
in additional local contrast enhancement. Very low value LP
coefficients were omitted in the enhancement process to avoid
noise amplification [14].

VI. EVALUATION AND RESULTS

To evaluate the results obtained with even and odd kernels,
a set of 47 clinical radiography images was used. Images were
acquired using Varian PaxScan4343 FPD with square pixels of
length 139 µm. Each images size is 3072 x 3072 pixels.

Images show various anatomies (hand, leg, chest, head, spine
etc.) from different patients obtained during regular clinical
routine. Example images are shown in Fig. 4, Fig. 5 and Fig. 6.

As shown, images processed using even and odd kernels are
very similar to each other. No significant difference in detail
visibility or contrast was found on the whole evaluation set.

(a)

(b)

Fig. 4. Example chest image processed with (a) four and (b) five
coefficient filter.

It was found that there is also no difference in the noise
prominence. Minor differences between processed images are
expected as the used kernels have different characteristics. As
can be seen, proposed approach does not introduce processing
artifacts, thus has a potential to be a part of a radiography



(a)

(b)

Fig. 5. Example knee image processed with (a) four and (b) five
coefficient filter.

image processing framework. Result are promising, however an
observer study that involves trained medical personnel is needed
for detailed evaluation.

VII. CONCLUSION

In this paper we presented an LP construction method that
uses four coefficient kernel instead of the five coefficient one. It
was shown that this approach uses 50 % less operations than the
original approach, and 12.5 % less operations in comparison to
the five coefficient binomial kernel approach. Even in the ”naive”
implementation (”multiply-accumulate”), 20 % less operation are
used.

(a)

(b)

Fig. 6. Example spine image processed with (a) four and (b) five
coefficient filter.

Proposed LP was evaluated as a basis for multi-scale
radiography image processing. Results were compared to the
ones obtained with the LP that uses standard five coefficient
kernel. Experimental results show that image contrast and detail
visibility are comparable. Noise prominence was not amplified
and no processing artifacts were introduced.
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