
 

Abstract—Simple data logging and measurements for basic 

academic lab experiments on electrical machines is usually 

performed using costly measurement equipment already 

available in laboratory. On the other hand, non-neglectable 

impact of low cost open source hardware, like Arduino or 

Raspberry Pi, has created an alternative for systems with low 

requirements. Increase in computational power of these devices 

and rapid decrease in sensors price now result in standalone low 

power electrical motor acquisition system built for a price just 

over 100 €. This paper presents one of the solutions of that 

acquisition system that is intended for student’s experimentation 

with the hardware and software. It adapts to existing sensors of 

interest in the laboratory to provide the possibility of integration 

with various sensor and motor types and sizes. The software on 

the Raspberry Pi 3 is written using Python programming 

language. Arduino Due is programmed using Arduino variant of 

C programming language. The overall system design and some 

sample measurement results, along with GUI (graphical user 

interface) are shown to demonstrate the usefulness of the system. 

 

  Index terms—Raspberry Pi, Arduino, Python, low cost data 

acquisition system, induction motor 

 

I. INTRODUCTION 

Nowadays low cost open source hardware is a very popular 

topic. Modern prototyping boards are embraced by many 

universities to tap into students’ creativity, as show in [1], 

provide a low cost experimentation kit, as shown in [2], or 

develop a real life low cost control system, as shown in [3] 

and [4]. Putting together different pieces of code and 

hardware, with the help of a vast community built around 

these boards, is an idea behind the aforementioned papers. 

Modern credit size computers (like Raspberry Pi 3 model B) 

can, in terms of computing requirements for data 

manipulation and visualization, meet the basic 

experimentation requirements of electrical power engineering 

Filip Filipović is with the Faculty of Electronic Engineering, University of 
Niš, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail: 

filip.filipovic@elfak.ni.ac.rs).  

Milutin Petronijević is with the Faculty of Electronic Engineering, 
University of Niš, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail: 

milutin.petronijevic@elfak.ni.ac.rs).  

Nebojša Mitrović is with the Faculty of Electronic Engineering, University 
of Niš, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail: 

nebojsa.mitrovic@elfak.ni.ac.rs).  

Bojan Banković is with the Faculty of Electronic Engineering, University 
of Niš, 14 Aleksandra Medvedeva, 18000 Niš, Serbia (e-mail: 

bojan.bankovic@elfak.ni.ac.rs).  

 
 

students. Microcontroller boards (like Arduino Due) can do so 

in terms of data acquisition. Raspberry Pi and Arduino can be 

easily integrated in MATLAB and Simulink as shown in [1] 

and [2], they can use some other framework such as [3], be 

part of larger system using the internet such as [5], or be 

accessed directly over the internet as shown in [4]. 

Students often choose Python instead of some other 

programming languages (such as C++) due to its simplicity, 

readability and fewer coding hours spent for the same task. 

The execution speed of a program written in Python is of less 

importance in this case since the dominant part of it is used 

for the user interaction. Specialized libraries used for data 

processing such as Numpy [6] and Scipy [7] are written in 

lower level programming languages which implies that data 

will be processed on a speed closer to these programming 

languages than to Python itself. It is typical for Arduino board 

based microcontrollers to be programmed using Wirling 

framework similar to C++. There is an open possibility to 

write time critical or specific functions in a way that 

microcontrollers are intended to. The differences between 

some of the most popular prototype platforms are presented in 

[8]. 

The purpose of this paper is to present students with a low-

cost data acquisition system which is intended to be used with 

testing equipment available in the laboratory of electric drives. 

The primary goal is to make the acquisition system as 

affordable as possible and the program available in a wide 

range of data processing devices. They range from desktops, 

laptops to any other device that runs Windows or Linux 

operating system. When such a system is established, it can be 

used for a variety of basic electrical machine diagnostics since 

it can collect signals from a variety of sensors. It is easily 

expandable and adjustable to currently not supported 

dominant sensor types due to circuit for sensor signal scaling 

and shifting consisting of operational amplifiers and other 

passive electrical components. 

This paper is structured as follows: section 2 gives a 

detailed description of used hardware components along with 

justification of each choice and cost specification; section 3 

presents demonstration results and section 4 discusses 

conclusions and future work.  

II. MATERIALS AND METHODS 

The base idea was that the system by itself has to be 

applicable for conducting data acquisition and data analysis 

without any third-party computers or software. Software 

libraries that will be used have to be free of charge for both 

personal and commercial application.  

Arduino and Raspberry Pi Based Solution for 

Electrical Machines Data Acquisition System 

Filip Filipović, PhD student, Milutin Petronijević, Assistant professor, Nebojša Mitrović, Full 

professor and Bojan Banković, Teaching fellow 

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering, 
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. EEI1.6.1-5



 

Unlike [9] where Arduino Pro Mini is used, larger memory 

and ADC (analog to digital converter) with resolution higher 

than 10 bits are desired for basic electrical machines 

measurements. For that reason, cheaper Arduino Pro Mini was 

replaced with more powerful Arduino Due which is based on 

32-bit SAM3X8E ARM Cortex-M3 CPU. Arduino Due uses 4 

of his 12-bit ADC for sensor inputs and two of its digital 

inputs (pins 2 and 13) for hardware quadrature encoder input. 

Communication with it is done via USB (universal serial bus) 

port and in this configuration Raspberry Pi 3 model B is the 

device that sends the commands and receives the results. The 

program is written so that any Windows or Linux based 

device can run it and control Arduino. The overview of the 

system is shown in Fig. 1. The two platforms supplement each 

other. Raspberry provides a base for data storage, 

visualization and user interaction, and its lack of analog inputs 

is compensated by Arduino. 

 

 
 
Fig. 1.  Overview of the low-cost data acquisition system 

 

Voltages up to 3,3 V are allowed on the input of the 

microcontroller and higher than that can damage the 

microcontroller board. To adapt to the existing sensors in the 

laboratory, which provide output of up to ± 5 V, circuit for 

signal scaling and offset had to be built. In addition, since 

some sensors wires can have substantial length and 

inappropriate shielding, a non-neglectable amount of noise 

can be picked up along the way, especially if the wires pass 

by experimental motor drives. To suppress high frequency 

noise, a low pass first order filter is designed with cut off 

frequency of 10 kHz (simple RC circuit). Along with filtering, 

there is a possibility of offsetting output signal up to 2,5 V, 

and that is achieved for all 4 channels simultaneously with 

one potentiometer. Signal gain for each channel can be 

defined independently with 4 potentiometers and the 

maximum gain is 1 (that configuration without offset can be 

used only if signal filtering is required). The circuit is 

supplied with 12 V DC. To achieve potential negative output 

voltage, the known configuration for voltage inversion using 

555 timer integrated circuit is used for operational amplifier 

negative supply pin (see Fig. 2 for detailed look). 

Up to 40000 points can be recorded by the Arduino and 

then transmitted back. The user choses channels of interest, 

the sampling time of each channel (from as low as 10 µs) and 

the total number of points to be recorded. This implies that 

problems of overcoming relatively slow sampling times for 

more precise condition monitoring considered in [10] can be 

reduced to a suitable level for demonstration purposes. After 

these choices, the program will automatically arrange the 

number of points for each channel so that the data acquisition 

has the same time span. If the encoder input is used, the user 

must define the number of impulses per rotation of the 

encoder. There is an option to activate one digital output 

(digital pin 7) when the acquisition starts. Some transient 

states (such as induction motor direct on line start) can be 

recorded more easily if the signal of that pin is used for motor 

contactor close command. After that, the user is asked to enter 

the name of the experiment that is conducted and it is packed 

in .csv file so that it can be easily analyzed later. After that, 

the number of acquisitions and the pause between the two 

consecutive ones is defined. Moreover, there is an option for 

continuous acquisition mode, where next acquisition cycle 

will start immediately after the recorded data is transmitted to 

Raspberry. When the folder where the results are saved is 

selected, the user can start acquisition. Each channel in each 

cycle will have a separate .csv file and aforementioned .csv 

will keep track of the recorded files and their synchronization 

for further user data manipulation. The first column in .csv 

data record contains time, and the second contains the 

recorded parameter. Files can be analyzed in some other 

software (such as MATLAB or Mathematica) and the headers 

that are present in each file, and define the name of each 

column, can be useful when doing this task automatically. 

 

 
 

Fig. 2.  Detailed look on circuit for voltage scale and offset 

 

 Since the recorded files are just arrays of numbers, gaining 

a good and quick grasp can be challenging for most people.  

People often prefer some sort of visualization over plain 

number representation. One part of written software has a job 

of visualizing recorded experiments of interest, and library 

used for visualization is Matplotlib [11]. It is only the 

measured speed transmitted back from Arduino Due which 

has the value that represents the actual speed. All the other 

recorded data is, for the sake of faster data transfer, 



 

transmitted as raw analog input read (values from 0 to 4095). 

Data manipulation (scaling and filtering using Kalman filters) 

is done using Numpy and Scipy libraries. After the 

appropriate manipulation, the data can be saved as a separate 

file so that it can be accessed directly the next time it is 

needed. 

 
TABLE I 

LIST OF MATERIALS 

 

Component Price [€] 

Raspberry Pi 3 Model B 47 

Arduino Due 26 

Circuit for voltage scale 

and offset 

18 

SD card (16 Gb) 8 

Power supply (5 V) 5 

Arduino Hall based 

current sensor (30 A) 

4 

Arduino sound sensor 5 

Total: 113 

 

Addressing the issue of low cost induction motor 

acquisition system cannot be completed if its price is just too 

high, the components used are hardly commercially available 

or if complicated programming and wiring are required. Table 

I gives a list of materials with the cost of the used 

components. What is used for the price calculation are 

average prices on internet shops available in Serbia (March 

2017).  

III. MAIN RESULTS 

Parts of the finished program will be shown and the focus 

will be on data visualization, as of something that will be used 

as such at the beginning of experimentation with electrical 

machines. It is important to point out not only that the 

software can work on most Windows or Linux systems, but 

also the possibility to communicate with any serial device (not 

only Arduino Due). It also acquires any sort of data as long as 

there is a strictly defined way of exchanging it. However, for 

now there is only a defined way of exchanging data with 

Arduino Due. The data can be visualized in the form of trace 

graph, Fourier transformation or spectrogram.  

 

 
 

Fig. 3.  Zoomed trace graph of recorded data  

In many applications a trace graph does not provide enough 

useful information by itself. Such an example could be the 

case of motor vibration analysis, where just the amplitude of 

vibration does not necessarily provide useful information. A 

much more desirable combination is that of present 

frequencies and their amplitudes. 

 

 
 

Fig. 4.  Fourier transform of recorded data 

 

Although Fourier transform can be useful for inspecting 

present frequencies in data, it cannot provide the information 

which frequencies were present at each moment. This is a 

very useful feature for motor vibration analysis because there 

can be a set of frequencies with fade in and fade out effects. If 

the detection of those frequencies is attempted with standard 

Fourier transform, they can be much harder to see. For that 

reason, another useful tool, spectrogram, is used. 

 

 
 

Fig. 5.  Spectrogram view of recorded data 

 

The bottleneck of the system is serial communication. If a 

faster sampling rate and live representation of recorded data 

are desired, serial communication becomes a limiting factor. 

Serial communication, in general, does not include only 

recorded data, but also data labelling and blocks for data 

integrity check, like CRC (cyclic redundancy check), as 

shown in [9]. Furthermore, all that increases the time of data 

transfer and the lower limit of data sampling time that can be 

seen in real time. The fact that there can be up to 4 channels 

that record data, all with different sampling time, further 

expands the structure of the transmitted message. The data, in 

general, must be stored in Arduino and then transmitted to 

Raspberry. This implies that signal sampling can be done for 



 

only a finite period of time, after which the recorded data has 

to be transferred. Even if a new cycle starts immediately after 

the transfer, there is a non-recorded window of time when 

data was transferred. 

 

 
 

 
 

Fig. 6.  Spectrogram visualization of frequency sweep, using linear (upper 
figure), or logarithm (lower figure) amplitude scale. 

 

“It costs a little, but how worth is it?” is an obvious 

question and the answer to it will come in a form of 

comparison. Function generator “ISKRA MA3732” is used to 

provide various signal waveforms, amplitudes and 

frequencies. The signal is fed into Arduino and into 

oscilloscope “Tektronix DPO3034” for comparison. After 

those measurements, both devices were recording line current 

of induction motor driven by variable frequency drive, 

oscilloscope using his own current clamps and Arduino using 

cheap Hall effect based current sensors. When the signal 

generator output voltage was recorded, it was fed into 

Arduino over aforementioned circuit for scaling. In this 

configuration there was no galvanic isolation for measuring 

voltage, although there is possibility for it if appropriate 

sensors are used.  

In the first test, frequency sweep was done with a 

sinusoidal signal provided by the function generator, and it 

was not very uniform due to the fact that it was done by hand.  

The potentiometer was being turned from the lower limit (100 

Hz) to upper (1000 Hz) over a period of 10 seconds. As it can 

be seen in Fig. 6. linear representation of data gives 

distinguishable dominant frequency, while lower magnitude 

frequencies can be hard to detect. Logarithmic representation 

of the recorded data can give an insight in other present 

frequencies of much lower magnitude and it is up to the user 

to define a preferred way. 

 

 
 

Fig. 7.  Fourier transform of recorded signal containing high frequency signal 

for Arduino Due upper frequency limit test. 

 

The next test was upper frequency limit of the device. As 

mentioned before, the minimum sampling time of Arduino 

Due was set to be 10 µs. It implies that the upper limit of the 

frequencies to be seen with it is 50 kHz. For this test, the 

frequency of just over 42 kHz was used and the magnified 

part of Fourier transform graph was shown in the Fig. 7. 

There were no other noticeable frequencies and the 

transformation was done on raw data (not scaled to match the 

input voltage). 

 

 
 

 
 

Fig. 8.  Motor current waveform recorded using oscilloscope (upper figure) 

and Arduino Due (lower figure) 



 

A combination of electric motor and variable frequency 

drive was used for the last set of tests. The purpose is not only 

to observe the results and see the usefulness of the data, but 

also to observe the system itself. In other words, the influence 

of all disturbances on it. If the system is not up to task, further 

hardware or software changes have to be made until the 

primary goal is achieved. Comparison of recorded current 

using oscilloscope and Arduino can be seen in Fig. 8.  

 

 
 

Fig. 9.  Motor terminals voltage sag (at around 1,9 s) that lasted 1 s and its 

influence on harmonics present in line current 

 

When Arduino Due is in the immediate proximity of 

variable frequency drive or induction motor power supply 

wires, there is noticeably more noise present in the recorded 

data (30 units peak-to-peak compared to 7 units in a low noise 

environment on 4096 units full resolution that correspond to 

3,3 V). As the last experiment, the influence of induction 

motor terminal voltage sag on motor current harmonics was 

recorded. The sag occurred about 1,9 seconds after the data 

recording had started and it lasted for about a second. 

Discussions on occurred harmonics can be a topic for some 

different papers and this one only shows current spectrogram 

for illustrative purpose (Fig. 9.). The warmer colours in the 

spectrogram are used for points of highest amplitude. Points 

of lowest amplitude are coloured with dark blue colour. Exact 

value of each point can be obtained by hovering over the point 

of interest with mouse pointer. 

IV. CONCLUSION 

All of these would be modest tools for electrical machines 

scientist, but good enough for an undergraduate electrical 

power engineering student. Recording present frequencies in 

magnetizing current of transformer or similar level 

experiments in laboratory can be done by this system. The 

simplicity of the program can be an advantage for someone 

who just wants to see some signal without doing daunting 

system setup. 

Free software libraries usually come with a price. Because 

they usually rely on some community of volunteers to update 

and fix bugs of those libraries, no one guaranties that the 

provided code is completely tested. The software of similar 

functions could have been made using MATLAB or 

LabVIEW development environments. Time of development 

and testing would have been arguably much shorter, and 

provided functions probably better tested and optimized. 

Mathworks Simulink and LabVIEW provide a possibility of 

graphical programming. This is a very convenient feature for 

an engineer with no programming background or for a rapid 

system prototyping. These environments offer hardware 

support for popular boards, and packages for optimized code 

generation. This implies that easy setup and generated code of 

decent performance will be provided without complicated 

setup and tuning. Only drawback can be the fact that these 

environments are not free, and so, modification of the 

software by a student could be possible only if he owns 

appropriate licence. 

As it was pointed before, these boards have novice friendly 

vast community built around them. On the other hand, boards 

such as BeagleBone Black where usually the community 

assumes some advanced level of Linux programming 

knowledge was the reason previous combination was used. 

However, BeagleBone Black is arguably a better solution for 

this purpose when it comes to experienced microcontroller 

programmers. Designing a top-notch, but overwhelmingly 

complex system from a programmer’s standpoint, was not the 

idea in the first place. Potentially conducting a substantial 

number of successive acquisitions and storing them in an 

ordered and labelled way is the program feature that will be 

used for future machine learning applications in areas of 

classification and anomaly detection. 

REFERENCES 

[1] Jamieson, Peter, and Jeff Herdtner. "More missing the Boat—Arduino, 

Raspberry Pi, and small prototyping boards and engineering education 
needs them." Frontiers in Education Conference (FIE), 2015. 32614 

2015. IEEE. IEEE, 2015. 

[2] Reck, Rebecca M., and Ramavarapu S. Sreenivas. "Developing a new 
affordable DC motor laboratory kit for an existing undergraduate 

controls course." American Control Conference (ACC), 2015. IEEE, 

2015. 
[3] Sobota, Jaroslav, et al. "Raspberry Pi and Arduino boards in control 

education." IFAC Proceedings Volumes 46.17 (2013): 7-12. 

[4] Reguera, P., et al. "A low-cost open source hardware in control 
education. case study: Arduino-Feedback MS-150." IFAC-

PapersOnLine 48.29 (2015): 117-122. 

[5] Ferdoush, Sheikh, and Xinrong Li. "Wireless sensor network system 

design using Raspberry Pi and Arduino for environmental monitoring 

applications." Procedia Computer Science 34 (2014): 103-110. 

[6] "NumPy — NumPy", Numpy.org, 2017. [Online]. Available: 
http://www.numpy.org/. [Accessed: 01- Apr- 2017]. 

[7] "SciPy.org — SciPy.org", Scipy.org, 2017. [Online]. Available: 

https://www.scipy.org/. [Accessed: 01- Apr- 2017]. 
[8] Maksimović, Mirjana, et al. "Raspberry Pi as Internet of things 

hardware: performances and constraints." design issues 3 (2014): 8. 

[9] Alves, Ana Priscila, et al. "BITtalino: A Biosignal Acquisition System 
based on the Arduino." BIODEVICES. 2013. 

[10] Sapena-Bano, A., et al. "Condition monitoring of electrical machines 

using low computing power devices." Electrical Machines (ICEM), 
2014 International Conference on. IEEE, 2014. 

[11] "Matplotlib: Python plotting — Matplotlib 2.0.0 documentation", 

Matplotlib.org, 2017. [Online]. Available: https://matplotlib.org/. 
[Accessed: 01- Apr- 2017].   

 




