
Abstract—Attractiveness of Python program language is 
partially based on availability of large number of open-source 
libraries. In this paper we demonstrate application of one of 
Python libraries (BioSPPy) on a set of physiological signals from 
the Physionet CEBS database. Electrocardiogram and 
respiratory signals are analyzed, both before and after listening 
of classical music (states B and P, respectively). Heart rate 
variability analysis is performed using functions from the 
toolbox and by inspection of spectral aspects of the signals. 
Several metrics are used for comparison, like instantaneous 
heart rate and ratio between the spectrum segments. The 
obtained results show further possibilities for developing 
graphical interfaces for efficient vital signal analysis, and 
implementations based on open-hardware platforms. 

Index Terms— R-peak detection, heart rate variability, 
respiratory signal, python library, open source.  

I. INTRODUCTION

Excellent reception of the Python program language among 
experts led to development of numerous open-source libraries 
for diverse purposes. The most of them are still not widely 
applied or thoroughly examined. This is especially important 
for monitoring of vital signs. Each library is optimized for 
specific type of signals and files (such as image, sound, 
video). This further leads to optimal time consumption in case 
of any kind of signal processing. Python is interpreter- and 
object-oriented program language that is widely used among 
academicians for educational and research purposes. It is also 
used for production of commercial products [1]. 

Biomedical signals express wide range of distinctions in 
time and frequency domain. This paper demonstrates 
implementation of BioSPPy library on physiological signals, 
like cardio signals [2]. Electrocardiogram (ECG) is a common 
physiological reference signal, which is used in this paper. 
Since in medical practice individuals are often inspected from 
the aspect of breathing, we also included respiratory signal 
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(RESP) in the experiment. Signals considered in this paper are 
taken from the Physionet CEBS database [3]. All signals are 
acquired from awake and inactive subjects exposed to musical 
stimulus. 

The fundamental physiological signals are analyzed in 
Python environment using modules from BiosPPy library in 
order to be further implemented in computer-aided expert 
systems. Functions within that module cover essential signal 
processing (filtering, signal representation), R-peak detection 
with various algorithms, as well as signal analysis in 
frequency domain. 

Our focus is directed towards heart rate variability (HRV) 
analysis. It can be conducted in different ways and from 
diverse aspects [4]. From medical point of view, analysis of 
the signal that represents a number of heart beats per minute 
(HR) is crucial. Pathological states are reflected on the 
variability of the heart rate. In similar way, it is possible to 
track the influence of some other factors, such as music [5-7]. 

In this paper we use a method for analysis of HRV in 
frequency domain, in particular, power spectral density. As a 
result we provide the ratio between energies of spectral 
components within particular ranges of frequency. Analysis is 
executed for both states and on all subjects from the dataset. 
Several comparisons are made here. 

The organization of this paper is as follows. In Section II, 
materials and methods are described. Further information on 
the database of signals and BioSPPy library is provided. The 
simulation and experimental results are given in Section III. 
Conclusions are summarized in Section IV. 

II. MATERIALS AND METHODS

A. Dataset
Physionet CEBS database is used as the experimental

dataset. It consists of electrocardiogram (ECG), 
breathing/respiratory signal (RESP) and seismocardiogram 
(SCG). The main purpose for this dataset is twofold: 1) 
comparing the R peak detectors with respect to the influence 
of breathing, and 2) examination of the R-R (heartbeat) time 
intervals obtained from different types of physiological 
signals (e.g. from specific ECG lead and by segmentation of 
SCG without an ECG as a reference). The CEBS dataset also 
provides signals related to the musical influence on subjects. 
In particular, three states are considered: 1) the basal state – B 
(before the music), 2) the music state – M (while listening to 
the music), and 3) the post-music state – P (after the music 
ended). The dataset was collected using a Biopac MP36 data 
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acquisition system with 5kHz frequency sampling, where two 
ECG channels are acquired with 0.05-150Hz bandwidth, 
RESP from the thoracic region by the transducer with 0.05-
10Hz, and SCG using the 0.5-100Hz bandwidth 
accelerometer. 

The signals are obtained using twenty healthy subjects 
while being awake in supine position. Here, we analyze only 
B and P states, while M state is not included in further 
analysis. 

B. BioSPPy library 
BioSPPy is a toolbox for biomedical signal processing and 

it is written in Python. This toolbox brings together numerous 
signal processing and pattern recognition algorithms 
specialized for the analysis of biomedical signals. The library 
is open-source and it is accessible both for academic and 
commercial purposes. It covers a range of functions adapted 
to biomedical signal processing. Syntax of these functions is 
considerably simplified with respect to optimal manipulation 
over biomedical signals. The library is called from the Python 
environment using command “import” as shown in Fig.1. 

 
Fig. 1. Import of BioSPPy library into Python environment. 

 
Fig. 2. The first (upper panel) and the second (lower panel) ECG channel. 

Toolbox is portioned into modules: biometrics, clustering, 
metrics, plotting, signals.bvp, signals.ecg, signals.eda, 
signals.eeg, signals.emg, signals.resp, signals.tools, storage 
and utils. In this paper we implemented modules for 
electrocardiogram processing (“signals.ecg”), respiratory 
signal processing (“signals.resp”), tools for graphical 
representation (“plotting”). Also, certain functions for filtering 
and frequency analysis are implemented within the 
“signals.tools” module. 

Module “signals.ecg” encompasses functions for 
electrocardiogram signal importing, signal pre-processing 
(filtering interfering components from the signal, such as 
muscle activity, 50Hz power noise and baseline wandering), 
algorithms for detection of QRS complex (Gamboa, 
Hamilton, Slope Sum Function, etc.) [8-10]. Function for 
estimation of Instantaneous Heart Rate is also covered by this 
module. 

The signals from Physionet CEBS database are grouped 
into .mat files. They are loaded into Python environment 
using the appropriate modules for import of .mat files from 
SciPy library (it comes with the standard distribution of 
programming language). 

III. SIMULATION 
Electrocardiogram signal is processed using signals.ecg 

module from BiosPPy library. There is information about two 
channels of electrocardiogram within the database (shown in 
Fig. 2 and denoted as ECG I and ECG II). The first processing 
step consists of signal filtering in order to suppress 
interferences and noise. For graphic display, functions from 
the plotting module are used, which significantly facilitate 
construction of the desired plots (built-in style, font size, line 
type, etc.). 

The next step involves the detection of R peaks within the 
QRS complex (middle panel in Fig. 3). Primary algorithm is 
defined by Pan and Tompkins in 1985 [11]. However, as 
already mentioned, in the signals.ecg module there are several 
algorithms available that perform the R peak detection. All of 
them give a sequence of R peaks positions as output. One of 
the channels, ECG I or ECG II, can be selected as a reference 
channel. The time between two successive R peaks is defined 
as RR interval. The reciprocal value of RR interval multiplied 
by 60 gives a number of beats per minute. In this way, the 
new array is formed which represents heart rate (HR) in time. 
This is illustrated for raw electrocardiogram (bottom panel in 
Fig. 3). Parameter HR is expressed in bpm (number of beats 
per minute), as: 

 60( )
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It is expected to be in the range of 60-100bmp while resting. 
Here, an ECG-based R peak detection algorithm is applied. 

Even though, the beat variability may be measured in terms of 
different types of signals found in the combined set. In the 
first iteration, analysis of the heart variability implies analysis 
of HR array [12]. 

For twenty subjects from the database, comparison of HR 
values is performed in two states: B state (prior to exposure to 
the music stimulus) and P state (after exposure to music 
stimulus). As an example, plot for one of the subjects is 
shown in Fig. 4. Heart rate variability depends on the music 
type and tempo to which subjects were exposed. In the 
example from Fig. 4 there is an average increase for the value 
of heart rate. 



 

 
Fig. 3. Detection of R peaks for the first electrocardiogram channel. Number 
of beats per minute is calculated based on the detected RR intervals. 

 
Fig. 4. Parallel display of heart variability for one subject before and after 
exposure to a musical stimulus (states B and P, respectively). 

Visual inspection of HR signal in time domain does not 
provide a complete information on signal behavior. Therefore, 
it should be further analyzed in some of transformation 
domains. Most frequently used transformation domain in 
literature is related to Fourier transformation of HR signal 
[13]. Here, we use Fourier transform of HR signal, or more 
specifically, power spectrum density of HR signal: 

 ( ) ( ) [ ]2
10 log10P f HR jf dB= .  (2) 

Obtained power spectrum density is then averaged using 
moving average filter of size of 10 samples with sliding by 1 
sample. Before averaging, Hann window is applied on each 
segment of the signal. Fig. 5 shows two power spectrum 
density representations of the HR belonging to subject before 
and after listening to music (states B and P). Certain 
differences in power spectrum density curves are evident 
(signal power significantly drops at some frequencies). 

The other type of signal which we used is respiratory 
signal. Again, the functions from BiosPPy are applied. It is a 
common practice in practical implementations to observe 
respiratory signal together with electrocardiogram and other 
cardiosignals [14]. Certain pathological states and diseases 
can be diagnosed and perceived following this reasoning. 

Module “signals.resp” enables low-pass signal filtering as 
well as detection of zero-crossings of the filtered signal. 
Detected zero-crossing points enable estimation of the 
instantaneous respiration rate in time. Fig. 6 shows an 
example of analysis of the respiratory signal of a subject. 
Namely, along with originally recorded respiratory signal, 
filtered signal is presented with the detected zero crossings 
points. Moreover, estimated instantaneous respiration rate is 
presented in this case. 

 
Fig. 5. Parallel display of the power spectrum density for one subject before 
and after listening to the music (states B and P, respectively). 

 
Fig. 6. Analysis of the respiratory signal (first panel), filtered signal along 
with the detected zero crossings (second panel), and estimated instantaneous 
respiration rate (third panel). 

Different valuable characteristic ranges of the spectrum are 
introduced in literature [15]. This is applied here for 
differentiating the low and the high frequencies. These 



 

segments are defined as a low-frequency part of the signal in 
the range from 0.04 Hz to 0.12 Hz and high-frequency part 
from 0.12 Hz to 0.4 Hz. Abovementioned ranges are shown in 
Fig. 5. Ratio of those two parts of the spectrum is denoted as a 
HF/LF ratio: 
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Certain pathological states are characterized with notable 
maximums in HF and LF parts, and it is reflected on HF/LF 
ratio [15]. The HF/LF ratio is calculated for all subjects from 
the database and for both states (before and after listening to 
music).  

 
Fig. 7. Comparison of the ratio of energy contained in a high-frequency (HF) 
and low frequency (LF) part of the spectrum before and after listening to the 
music (states B and P, respectively). 

Fig. 7. illustrates HF/LF ratio behavior for different 
subjects in two states. For most of the subjects HF/LF ratio is 
decreased. This is especially evident for subject number 16 
which illustrates the effect of music. 

IV. CONCLUSION 
In this paper we demonstrated the use of open-source 

library from the Python 3 program environment. Functions 
from the library are optimized for processing of biomedical 
signals. The toolbox is tested on Physionet CEBS database 
where the signals are synchronously acquired.  

We observe two groups of signals - electrocardiogram (two 
channels) and corresponding respiratory signal. Based on R-
peak detection, we estimated the number of heart beats per 
minute. Analysis of heart rate variability is further examined 
in spectral domain, while the ratio of energies of the 
components on high and low frequencies is calculated for all 

20 subjects in cases before and after listening to music. 
Influence of musical stimulus is seen as a decrease of this 
ratio for the most of the subjects. 

Directions for future research are seen in application of 
Python environment and BiosPPy library for designing of 
graphical user interface. Further acquisition of signals in real-
time will be enabled using Arduino open-hardware platform 
and biomedical module for acquisition of electrocardiograms 
and other physiological signals.  
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