

Abstract—Mobile robots are used in various applications,
some of which have specific requirements, like precise
localization. An odometry may be used for localization, or as a
supporting system for improving accuracy of a global
localization system. This often requires a lot of computing power
and therefore is not suitable for embedded systems. Although
there are a lot of small computers available, suitable for mobile
robots, with enough processing power for ordinary odometry
algorithms, rarely a suitable interface for reading a high pulse
train signal of the high resolution incremental encoder is
available. In this paper we will present one efficient solution,
tested through experiments, for bridging Raspberry Pi 3 and
magnetic incremental rotary encoders.

Index Terms— Odometry, Encoders, RaspberryPi

I. INTRODUCTION

In recent years single-board computers (SBC) have become
ubiquitous and are a preferred choice for many researchers.
Currently there are a myriad of different SBC-s each with its
strengths and weaknesses, and it can be sometimes difficult to
choose the right one. The key features of a SBC are
computational power, number of inputs and outputs,
communication interfaces, cost and ease of use. Another
important part to consider is the popularity of the SBC and its
community.

For our project we have chosen the Raspberry Pi (RPi) as a
platform for our mobile robot because of its low cost and
computational power [1], also it is very popular and has a
large community with a lot of documentation. The latest
version of the RPi has also Wi-Fi communication, which is
beneficial for wireless programing, control and data transfers.

RPi has a logic level of 3.3V which in some cases can

Vladimir Sibinović is with the Faculty of Electronic Engineering,

University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
vladimir.sibinovic@elfak.ni.ac.rs)

Vladimir Mitić is with the Faculty of Electronic Engineering, University of
Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
vlada.m.mitic@gmail.com

Miloš Petković is with the Faculty of Electronic Engineering, University
of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
milos.petkovic@elfak.ni.ac.rs)

Darko Todorović is with the Faculty of Electronic Engineering, Universiy
of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
darko.todorovic@elfak.ni.ac.rs)

Goran S. Đorđević is with the Faculty of Electronic Engineering,
University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia (e-mail:
goran.s.djordjevic@elfak.ni.ac.rs)

cause some inconveniences, but can be solved using level
shifters.

As for the programing of the RPi we can use different
languages including Scratch, Python, and C++. That gives us
an opportunity to develop complex programs and use the
platform for different types of research.

II. INTERFACING THE INCREMENTAL ENCODER

Our mobile robot is based around a differential drive
system with Faulhaber motors shown on figure 1. These
motors have a planetary gearhead with a reduction of 1:28,
and a magnetic incremental encoder with 512 increments per
revolution. Therefore, we had 14336 counts per revolution. At
the maximum speed of 460 rpm which is 7.667 rev/s the
number of counts would be around 110000 counts per second.
This gives the signal frequency of around 220 kHz.

We tried connecting the encoder pins directly to the RPi,
but the frequency of the signal is two large. It was possible to
obtain some information from the readings, but the data was
not reliable, and the processor engagement was significant.
The solution to this problem we saw in two possibilities: to
use a microcontroller for encoder reading, or to use a
specialized IC for reading incremental encoders.

Fig. 1. Motor Faulhaber 1516.A0210 with planetary gearhead and magnetic
incremental encoder

We wanted to avoid using a microcontroller, because it

requires software development for reading the signals and
forwarding the information to the RPi. Ensuring that the data
is correct would be challenging because of the large number
of counts, so we decided to use a reliable solution. For

Mobile Robot Odometry Using High Resolution
Incremental Encoders and Single Board

Computers
Vladimir Sibinović, Vladimir Mitić, Miloš Petković, Darko Todorović, Goran S. Đorđević

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. ELI3.4.1-3

counting the encoder pulses we had at hand a specialized IC
from Broadcom/Avago, model number HCTL-2032. This is a
Quadrature Decoder IC that interfaces encoders to
microprocessors. It has a 33 MHz clock, and two channels for
reading encoders. Encoder increments are counted using 32-
bit binary up/down counters.
 Parallel reading from the IC can at one-point transfer one
byte, and there are 2 pins for selection of which byte is being
read. The counter is incremented even during reading, so that
reading must be done from high to low byte. The circuit also
has a reset pin that resets each counter.

Reading needs 8 General Purpose input/output (GPIO) pins
for transferring the data only. The minimal number of pins
needed for interfacing the IC was 15. This was without using
the full potential of the IC. This pose a problem for the RPi
because of the 40 pin header that, besides the encoder reading
had a couple of peripherals connected as well. Also, because
of the header pinout that goes without any particular order, the
wiring diagram was very complex. In spite all this issues we
managed to connect the 15 pins to the RPi, via level shifters,
and developed an algorithm for interfacing the IC. After
testing the algorithm on a microcontroller in order to confirm
that it is working we came to a conclusion that it was not
possible to interface this IC from the RPi. There were a couple
of reasons for this. Firstly, because the IC is still counting
while we are obtaining the data, the data transfer speed should
be as fast as possible in order to avoid data loss. The problem
here was that RPi pinout is defined in a way that every pin is
read separately, where on microcontrollers we have 8-pin
ports. Besides that we hat the issue with the Linux operating
system, which like most operating systems isn’t real-time. We
couldn’t ensure fast switching of the bytes that are being read
is fast enough as well so, as a result, the read data was
corrupted.

The conclusion was that there isn’t a reliable way to read
information from encoders with a RPi, without substantial
loss of data. To overcome this problem, we have used a
microcontroller which is used to read the encoders and it
connected to the RPi using serial communication. Because we
had tested the algorithm for interfacing the IC, and we knew
that the IC is reliable we decided to connect the encoders to
the IC, we interfaced the IC with the microcontroller and then
passed the information to the RPi using serial communication.

The microcontroller used is PIC18F4431, which was also
something that we had at hand, and different microcontroller
can be used. We have connected the 15 lines from HCTL-
2032 to the microcontroller. Because of the different logic
level between the RPi and the microcontroller, we must use a
level shifter for serial communication.

A custom two-layer PCB was designed, shown on figure 2,
to hold the HCTL-2032, microcontroller, level shifter and a
voltage regulator. The 8-pin parallel interface from the IC was
connected to port D of the microcontroller so we could have
one cycle reading of a byte. The constraints of the board ware
the dimensions of the robot and the space required for all of
the components.

Fig. 2. Custom made two-layer PCB for the encoder reading part of the
system

The serial communication is two-way, where the RPi acts

as a master and the microcontroller is the slave. There are 7
defined commands that the RPi can issue to the
microcontroller:

 Enable – the microcontroller start reading the
number of counts for two encoders periodically
and sends the information to RPi.

 Disable – the microcontroller stops reading and
waits for the next command.

 Reset X – asynchronous reset of the counter for the
first encoder.

 Reset Y – asynchronous reset of the counter for the
second encoder.

 Reset All – asynchronous reset of the counters for
both encoders.

 Acknowledge X – synchronous reset of the counter
for the first encoder.

 Acknowledge Y – synchronous reset of the counter
for the second encoder.

Enable and disable commands are defined if for some

reason we want to pause the reading of the encoders. The
asynchronous reset commands are present in case data
corruption is detected. They also should be issued before the
enable command to ensure a 0 starting point. The synchronous
reset commands are sent every time the RPi receives the
number of pulses, so that the microcontroller knows it is safe
to reset the counter. Resetting is important in order to avoid
counter overflow which would lead to significant data loss.
When in reading mode, every 50 ms, the microcontroller reads
the data from the IC for each encoder and if acknowledgment
was received, resets the counter for the specified encoder
immediately. The reset should be executed right after the read
in order to minimize the number of pulses that are lost
between the read and the reset. The microcontroller doesn’t
store the value because it is being stored in the IC, it

immediately forwards it to the RPi. This way the possibility of
having data synchronization problems is minimized. Because
each time, the RPi obtains the data, the counter is being reset,
the data represents an increment of the travelled distance.

III. ODOMETRY

Microcontroller sends the read values to the RPi, and then
the values are decoded and tested. If the data is valid, RPi
signals a successful read so that the microcontroller can reset
the counters.

The read value of the counted encoder pulses is transfer to
mm and added to the current value of traveled path. The
conversion from number of pulses to mm is done using
equation (1). Where d is the length of path traveled in mm, n
is the number of pulses from the encoder, R is the wheel
dimeter, Nm is the ratio of the gearhead and no is the number
of the impulse per revolution of the encoder [2].

omnN

nR
d

 (1)

With the combination of the encoder and gearhead, and

with 58.5 mm diameter of the wheel, we can calculate the
resolution of traveled path which is 0.012819mm.

To calculate robot’s location, we use two different set of
equations, one for straight line and one for curved movement.
We differentiate the two movements based on the difference
of path traveled by the two wheels. If it’s grater then zero then
the movement is on a curved line, and we use equations (2)
for calculating the increments in angle, x and y coordinates.
Where l represents the distance between the wheels, d is the
traveled path of right or left wheel, and k a time point.

)()1()1(

)()(

)()(

)(

)1()()1(

)()(

)()(

)(

)()(

)(

coscos
2

1

sinsin
2

1

kkk

klkr

klkr

k

kkk

klkr

klkr

k

klkr

k

dd

dd
y

dd

dd
x

l

dd

(2)

Then we add these increments to the previous angle and
coordinates and get the current values. This means that we
form the referent coordinate system based on the position and
orientation of the robot when the application was started.

We can see that for the straight movement if we use
equations (2) zero will be the divider and we must use
different equations (3).

)1(

)()(

)(

)1(

)()(

)(

)(

sin
2

cos
2

0

k

klkr

k

k

klkr

k

k

dd
y

dd
x

 (3)

Only equations for straight movement (3) could be used for

calculating, which would mean that a curved path is
approximated with short straight segments. This can be done
if the traveled path between two readings of the encoders is
small enough, which they are in our case, but this would add
an approximation error that could over time accumulate.

By using both sets of equations we lower the error in
calculating the robot’s location. The setup was experimentally
tested and proven that it can provide reliable data about robot
position. The test has been done on a small workspace, and on
a larger workspace we will probably accumulate a substantial
error.

IV. CONCLUSION

Although the RPi is a cheap platform intended for teaching
basic concepts, and as a development platform, it can, with
the right combination of additional electronics, be used for
research purposes. There some limitations to this.

High resolution encoders can be used if specialized ICs are
used with a microcontroller. This provides a low cost reliable
solution with a high resolution distance measurement.

We have built a mobile robot platform using RPi that can
be used for different types of research. The positioning of that
robot relies on odometry implementation described in this
paper.

Further work may include determining the accumulation
error of the system, using some kind of external reference
points, which the system can detect.

REFERENCES

[1] Wirth, M., Weichmann, F., Schaeffel, F., Zrenner, E. and Strasser, T.
(2013), Keep an eye on the Pi – Using the Raspberry Pi as inexpensive,
yet powerful platform for vision research. Acta Ophthalmologica, 91: 0.
doi:10.1111/j.1755-3768.2013.T028.x.

[2] Borenstein J., Everett H. R., Feng L. „Where am I? Sensors and
Methods for Mobile Robot Positioning“, 1996

