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Abstract— We investigate electronic properties of square 

HgTe quantum dots. The semi-empirical tight binding model in 

sp3d5s* basis of orbitals is used for calculations. The hopping 

links were limited to the first nearest neighbors and spin-orbit 

coupling is included in the model. We demonstrate appearance of 

topologically protected edge states in the energy gap of square 

HgTe quantum dot. The results provide the basis for future 

calculations of optical and transport properties of edge states in 

HgTe quantum dots.  

Index Terms—HgTe, square quantum dots, edge states, 

topological insulators.  

I. INTRODUCTION

In the last few years, topological insulators (TI) have 

been intensively studied because of their potential application 

in spintronic and quantum computing [1-5]. Two-dimensional 

(2-D) TI’s, which are also known as quantum spin Hall 

insulators, are a new kind of materials with specific features. 

They have an energy gap in the bulk and robust, topological 

(spin-polarized) and gapless states protected by the time 

reversal symmetry. 

The existence of such exotic states was first proposed in 

graphene [6], where the main drawback is the lack of the band 

gap. It was expected that the spin-orbit interaction will open 

an energy gap in the bulk and cause the emergence of states 

inside the gap. These states should be located at the edges of a 

nanostructure. However, it was found that the spin-orbit 

interaction in graphene is too small to be able to induce the 

appearance of energy gap in the experiments [7]. 

On the other hand, in 2006, Bernevig, Hughes and Zhang 

were theoretically predicted the existence of the edge states in 

the CdTe/HgTe/CdTe quantum wells [8]. By adjusting the 

thickness of the well, bands become inverted, thus the 

quantum phase transition occurs. The critical thickness of 

HgTe layer   when the edge states appear equal dc=6.3 nm is 
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predicted, which was confirmed later in the experiments [9]. 

Another example of experimentally confirmed TI’s are 

quantum wells with type II band alignment, such as the 

InAs/GaSb/AlSb devices [10]. These systems also have s-p 

inversion between the conduction and valence bands. 

However, hybridization of energy gap is much weaker than in 

CdTe/HgTe/CdTe heterostructures, which is explained by the 

fact that the valence and conduction bands in the 

InAs/GaSb/AlSb systems are spatially separated. 

In the last few years three-dimensional (3D) TI’s are 

brought to the focus of theoretical and experimental work. 

These materials represent generalization of the quantum spin 

Hall effect in three dimensions [11]. Examples of 3D 

materials in which surface states have been experimentally 

observed are BixSb1-x [12] and Bi2Se3 [13]. Similar behavior is 

predicted for a number of alloys made of heavy elements, for 

which the spin–orbit coupling is strong. 

In this paper we use the semi-empirical tight-binding (TB) 

model in search of helical edge states in HgTe quantum dots. 

This method is characterized by overlap integral 

parameterization found from a fit from fundamental ab initio 

calculations. The alignment between the results of the two 

methods is good. Therefore, results are more realistic than the 

one found using effective k∙p models [14].  

Quantum dots are structures in which the carriers are 

confined in all three spatial directions. Varying parameters 

and techniques for fabrication, different shapes of quantum 

dots can be obtained. Here we study square shaped quantum 

dots. Furthermore, the electronic structure of a quantum dot is 

determined by the shape and composition. Therefore, we can 

setup desirable performance of nanoelectronic device that is 

suitable for the target application.  

An adjustment of energy gap can lead to inversion of the 

conduction and the valence bands. For HgTe the valence band 

has an s-like character and possesses Γ6 symmetry, while the 

conduction band has a p-like character and Γ8 symmetry. In 

the inversion process, the energy gap is closed, and after it is 

reopened the quantum phase transition occurs [8]. In this new 

quantum state, HgTe quantum dot has a finite energy gap in 

the bulk and helical edge states that are robust to any 

imperfections in the sample [15].  

This paper is organized into four sections. The next section 

provides theoretical bases of the TB method with the 

emphasis on the process of parameterization. The third 

chapter presents the main results obtained from the TB 

method, such as the energy spectrum and the densities of 

certain bulk and edge states in the square HgTe quantum dot. 

In the last chapter certain conclusions were made.   
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II. THE METHOD

One of the most widely used method for solving the 

problem of electron localization in a semiconductor with 

periodic potential is based on the TB method. The roots of the 

method can be found in [16]. The eigenstates are constructed 

from the linear combination of atomic orbitals belonging to 

the atoms which form crystal structure. The coefficients found 

from the expansion are the weights of the plane waves 

exp(k∙R), where vector R represents the position of atom in a 

lattice [17]. Rigorous use of the TB method involves 

calculation of a large number of overlap integrals between 

different atomic orbitals that makes it more complex than 

commonly used effective models. On the other hand, there are 

numerous advantages of this method. One of them is that it 

provides solutions not only around points of high symmetry, 

but it is possible to obtain the solution at any point in the 

Brillouin zone [17]. 

The TB method is useful for a number of cases where the 

quantum effects are considerable, and where the size of the 

system makes ab initio methods impractical for application 

[18]. It is more demanding, but much more accurate, than 

widely used effective methods. However, when comparing to 

more comprehensive ab initio methods it is less accurate but 

also extremely less demanding. Therefore, it can be more than 

an order of amplitude faster than ab initio methods, especially 

for systems built of a large number of atoms, where 

essentially ab initio method is not applicable.  

The electrons in atoms are generally localized around the 

core and the probability of leaving atoms is exceptionally 

small. However, when two atoms get closer, the orbits of two 

electrons of different atoms may overlap in space, which 

means that there is a finite probability of electron transition 

from one atom to another. In this case, the energy of an 

isolated atom splits into two energies: one that is above and 

the other which is below energy of isolated atom. This can be 

generalized to a situation with large number of atoms that is 

occurring in the semiconductor crystal: electrons move from 

one atom to the other in the energy bands. 

Within the TB method, we first introduce the atomic 

orbitals φn(r) which are solutions of Hamiltonian HA(r) for 

isolated atom. In a system which consists of a large number of 

atoms, an overlapping of orbitals occurs. If the electrons are 

tightly bounded, the overlap is small. The Hamiltonian for the 

new system can be rewritten in the following form: 
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where atomic potential correction ΔV(r) has small value in the 

TB approximation. 

 A wave function ψn(r), which is the solution of the 

Hamiltonian H(r), is found as a linear combination of atomic 

orbitals φn(r) 
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 Based on the translational invariance of the system and the 

Bloch theorem, it is easy to show that 

 


n

i
e

N
)(

1
)( nmm

n Rrr
Rk  .   (3) 

Here Nc /1)0(n  , with N denoting the number of atomic

sites. By using the function defined in equation (3), energy of 

the m-th state could be determined as 
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where Em is the energy of the m-th atomic level, while Bm, Am,l 

and Cm,l are matrix elements integrals of the TB method.  

The element 
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is the overlap integral between corresponding orbitals of the 

adjacent atoms.  

 The atomic energy shift due to the potential on neighboring 

atoms is 
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These two matrix elements usually have small values, 

whereas the most significant matrix element of the TB method 

represents the bond energy  
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and is usually called “the two center integral”. 

The matrix elements between orbitals in the TB method are 

generally limited to the first, second or third nearest-neighbor 

interactions [19]. In this paper we use sp
3
d

5
s* basis set, while 

the hopping terms are restricted to the first nearest neighbors. 

The TB parameters for HgTe crystal are given in Table 1 

[19]. Terms denoted by capital E represents the on-site matrix 

elements, while the V terms define the hopping matrix 

elements as it is explained in [17]. Subscripts s, p and d 

denote type of an orbital. Due to the Td symmetry of HgTe 

crystal, d-type orbitals used for description of the conduction 

band (xy,yz,zx) and (x
2
-y

2
,3z

2
-r

2
) are different. Values of 

parameters are given for temperature 0 K. Parameters at finite 

temperature are obtained by linear interpolation. 



 

 
TABLE I 

TB PARAMETERS FOR  HGTE CRYSTAL IN ORTHOGONAL BASIS
 
SP

3
D

5
S

*
 [19]. 

VALUES ARE GIVEN FOR TEMPERATURE OF 0 K, AND THE LATTICE 

PARAMETER IS 6.453 Å. 

 

TB Parameters for HgTe (eV) 

 sE  −10.04016  sE  −1.502103 

 pE  1.580003  pE  5.929255 

 
xydE  10.139959  

xydE  15.108978 

 
2y-2x

dE  13.145395  
2y-2x

dE  15.431086 

 *s
E  12.611213  *s

E  14.801158 

   0.375000    0.465000 

 ssV  −0.904384  **ss 
V  −1.570513 

 *ss 
V  0.357261  *ss 

V  −0.242580 

 spV  1.085069  spV  2.014492 

 
ps* 

V  1.175059  
ps* 

V  1.405375 

 sdV  −0.525896  sdV  −1.067102 

 
ds* 

V  0.485896  
ds* 

V  0.696627 

 ppV  3.166827  ppV  −0.945694 

 pdV  −1.789915  pdV  −0.653612 

 pdV  1.406422  pdV  1.657517 

 ddV  −0.529629  ddV  2.424709 

 ddV  −1.064207 / / 

 

III. MAIN RESULTS 

Geometry of HgTe quantum dot is shown in the Fig. 1. 

HgTe material has a zinc blende crystalline structure. It is 

easy to see that Hg and Te atoms are forming two 

interpenetrating face centered cubic crystal lattices, that are 

shifted by a quarter of the main diagonal along it. The unit 

cell of the crystal is characterized by tetraedal coordination 

where each atom of one type is surrounded by four atoms of 

second type, positioned as the vertex of a regular tetrahedron. 

For systems with a tetraedal coordination average number of 

valence electrons per atom is four, and a bond configuration is 

suitable for the case of two electrons per bond, which 

contributes to a strong covalent bond character that has been 

determined for such materials. The removing of central atom 

in a tetraedal coordination, leads to the breaking of covalent 

bonds, which corresponds to the situation of four unbound 

electrons. Surface atoms in the TB contribute to the formation 

of dangling bonds which typically can cause occurrence of 

edge states within the energy gap of the material. 

In this paper we studied HgTe quantum dots. The dot is 

composed of 100 unit cells arranged inplane forming a square 

array. The lattice parameter is 6.453 Å, thus the size of square 

structure considered here is 6.453nm × 6.453 nm. Due to 

finite dimensions of the structure in the lateral plane, some 

edge atoms are connected with less than two neighbouring 

atoms. These are so called dangling atoms. They contribute to 

the edge states that are not in the focus of our intrest, so we 

removed them from the dot.  

 
Fig. 1.  Schematic view of a square shaped HgTe quantum dot. Due to better 

visibility we show 4×4 quantum dot that is smaller than analyzed.     

 

The eigen-energies of square quantum dot considered here 

is shown in the Fig. 2. Each state represents one orbital from 

selected basis. Quantum dots are systems in which carriers are 

confined in all three spatial directions and because there is no 

k-space to be filled with electrons, all possible states exist as a 

discrete energy in Fig. 2. The zoom of eigenenergies in 

vicinity of the  point is shown on the insert in Fig. 2.  

 
 
Fig. 2.  Eigen-energies of square HgTe quantum dot with a total number of 

100 unit cells. The insert in Fig. 2 shows eigenenergies around the  point. 

 

We also want to visualize localization in a particulare 

energy state. Therefore, we plot real space probability as in 

Figs. 3 and 4. Here, the position of each atom in the figure is 

represented by blue circle. The probability is represented by a 

filled circle whose radius corresponds to amplitude of the 

probability density for finding the electron at a given atomic 

site. An example of the probability distribution for bulk and 

edge state are shown in Fig. 3 and Fig. 4, respectively. Both 

figures shown the distribution projected in the (x-y) plane, 

that is satisfying for thin sheets.  

Fig. 3 show the probability distribution of finding an 



 

electron in a low energy state at the top of the valence band. 

We note that distribution is elongated along the diagonal of 

the square quantum dot, that is due to anisotropy.  

 
Fig. 3.  The probability distribution for the state at the top of the valence band 

in HgTe square quantum dot. 

 

The probability distribution for the edge state is displayed 

in Fig. 4. This state is closest to the state at the top of the 

valence band (marked by colored circle in the insert of Fig. 2). 

It is evident that this state is mostly localized near the square 

vertex point and along two edges that crosses creating the 

vertex. We found one more state with the same energy and 

localization. These two states show a distinct helical property, 

which means that they have opposite spin-polarization at the 

given edge. This is in accordance with Kramer’s theorem 

which states that for every energy eigenstate of a time-reversal 

symmetric system with half-integer total spin, there is at least 

one more eigenstate with the same energy.  
 

 
Fig. 4.  The probability distribution for electron in the edge state in HgTe 

square quantum dot. 

 

We found that the edge states are almost entirely composed 

of p orbitals. Their localization is mainly on the Te atoms that 

are positioned around the half of dots thickness. We may also 

note that the upper right vertex is wider than the other three. 

Due to this leack of symmetry, simmilar edge states that are 

localized in the lower left vertex have higher eigenenergies.  

IV. CONCLUSION 

We study the exotic quantum states in square shaped 

quantum dot. The dot is made from HgTe crystal that has 

inverted band structure. We show that topological edge states 

exist in this nanostructure. These states are mainly composed 

of Te p orbitals. The functionality of devices based on HgTe 

quantum dots may be controlled by applying external fields. 

Therefore, important aspect such as influence of an electric 

and magnetic fields in tuning electronic properties of these 

quantum dots will be part of our future work.  
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