
 

  

Abstract— Hard disk drives are more prone to failures since 

they are the only electromechanical component of computer 

systems susceptible to mechanical wear. Failure of hard disk 

drive leads to permanent data loss, which is typically more costly 

than drive itself. Prediction of hard drive failure enables user 

notification to copy stored data to another storage device, 

preventing data loss. SMART technology monitors vital hard 

disk drive’s parameters and warn user when some of them 

exceed manufacturer defined threshold. Advanced failure 

prediction algorithms rely on machine learning to find mutual 

dependence of SMART indicators in order to provide more 

precise prediction of hard drive failure. In this paper, we 

presented algorithm based on anomaly detection method which 

enabled prediction of hard drive failure, 39 days prior actual 

failure of the hard drive.  

 

Index Terms— Hard disk drive; Failure prediction; SMART; 

Machine learning; Anomaly detection  

 

I. INTRODUCTION 

Hard disk drives (HDDs) are still the only 

electromechanical component of the computer system which 

is due to its mechanical design more prone to failure than 

other components. HDD failure could become costly to user 

due permanent data loss, since they are used as primary 

storage of user data. HDD failures can be classified into 

predictable and unpredictable failures [1]. Predictable failures 

are caused by processes which slowly degrade drive 

performance due mechanical wear and gradual degradation of 

storage surfaces. Indicators of these process such problems 

with reading and writing of data, increase in number of 

damaged disk sectors, increased vibration level, can be 

monitored to determine when such failures are becoming 

more likely. Unpredictable failures represent sudden drive 

failures, which occur due defective electronic components or 

sudden mechanical failures caused by improper handling. 

Self-Monitoring, Analysis and Reporting Technology, known 

as SMART, is used to monitor various indicators of HDD 

operation. These indicators store information about drive 

temperature, operating hours, the number of on/off cycles, the 

number of damaged sectors and are used to indicate a possible 

imminent drive failure. HDD manufactures commonly define 

thresholds for each monitored SMART indicator, thus the user 

is notified about possible drive failure when certain SMART 
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indicator exceeds the predefined threshold.  

A field study [2] conducted on 100,000 consumer-grade 

HDDs found correlations between certain SMART indicators 

and actual failure rates. It also shown that 36 % of drives 

failed without recording changes in any of SMART 

indicators, which limits usefulness in anticipating failures. 

Authors of papers [3] derived distribution-free statistical 

hypothesis tests which improve failure prediction. More 

advanced failure prediction algorithms exploit mutual 

dependence of multiple SMART indicators to make a more 

accurate prediction of drive failure [4, 5]. Such models rely on 

data sets of SMART indicators collected from the large 

population of hard drives, operating under similar conditions. 

Such data sets are collected in data centers and are typically 

inaccessible to researchers. In this paper we applied generic 

anomaly detection method to create anomaly detection 

algorithm for prediction of HDD failure. Derived algorithm is 

trained using data set of SMART indicators from large 

population of HDDs and results on independent data set 

shown high precision of failure prediction.  

II. SMART INDICATORS 

Backblaze, a remote backup service company, started 

sharing SMART statistics of the HDDs operating in their data 

center since 2013 [6]. Among different HDD models used in 

their data center, Seagate ST3000DM001 stands out with the 

substantial percentage of failures. This 3 TB hard disk drive 

produced by Seagate Technology from 2011, uses three 1 TB 

platters rotating at the spindle speed of 7200 rpm. This drive 

is intended to be used in desktop systems, direct-attached 

external storage devices (DAS) and network-attached storage 

devices (NAS). Manufacturer rates this HDD at 300 000 

load/unload cycles with annular failure rate (AFR) of less than 

1% per 2400 hours of operation per year. AFR is a percentage 

estimate of the products that will likely fail due to a defect 

over a 1-year period operated at nominal use level. Nominal 

use level for desktop HDDs is 2400 hours per year which 

corresponds to drive operation 8 hours daily five days per 

week. In case enterprise HDD used in servers, nominal use 

level of 8760 hours corresponds to continuous 24/7 operation 

all around the year. Starting from the population of 4829 

ST3000DM001 HDDs operated by Backblaze from 2012, 

1880 drives failed so far as shown in Fig 1. Furthermore, 

about 75% of reminder drives failed on of the bench tests 

once they were removed from service. Such high failure rates 

prompted a class action against Seagate to be filed in 2016, 

and primarily cited reliability data provided by Backblaze. 
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Some experts argue that Backblaze used the drives in a 

manner that "far exceeded the warranty conditions", like 24/7 

operation of drive intended for 8 hour per day desktop use.  

 
Fig. 1. Number of deployed and failed ST3000DM001 drives (2012 ÷ 2014) 

 

SMART indicators in Backblaze data set are available in 

raw and normalized form. The raw form of SMART 

indicators contains decimal values representing as a number 

of damaged sectors, operating hours or temperature, but 

sometimes raw parameters don't provide any meaningful 

information as a decimal number. The normalized form of 

SMART indicators is obtained by scaling of raw parameter 

into the range between 0 and 100, according to vendor 

specific scale. Backblaze data set is collected daily for each 

operational hard drive. Each entry contains the date of entry, 

basic drive information, failure indication and the set of 

SMART indicators. Basic drive information contains model, 

capacity and the manufacturer assigned serial number of the 

drive. Failure indication contains a “0” for the operational 

drive and is set to “1” if this is the last day the drive was 

operational before failing. Set of SMART indicators contains 

raw and normalized SMART data for up to 45 different 

SMART parameters depending on drive model.  

III. ANOMALY DETECTION METHOD 

Anomalies represent set of events which occur relatively 

infrequently are considerably dissimilar from the remainder of 

the data. When anomalies occur, their consequences can be 

quite dramatic and quite often in a negative sense [7]. 

Anomalies can be detected using statistical-based, distance-

based or model-based methods. Statistical methods rely on the 

statistical representation of “normal” behavior of overall 

population for input data vector x, the most commonly with 

normal distribution or some more appropriate distribution. 

Normal distribution p(x) of normal behavior is then used to 

determine confidence limit ε for detecting anomalies using the 

training set for input vector x. Anomalies are observations 

whose characteristics differ significantly from the normal 

behavior. This training set contains a certain number of 

anomalies which are used to find the most appropriate 

confidence limit, p(x) < ε, in order to correctly detect as many 

anomalies as possible [8]. In order to determine the most 

appropriate confidence limit ε, certain evaluation metrics, 

derived from confusion matrix should be used. The confusion 

matrix is used to represent the numbers of successful anomaly 

detections, called True positives, the number of incorrect 

anomaly detections, called false positives, and the number of 

undetected anomalies, called false negatives. 

Based on values from confusion matrix, we can use 

following metrics for determining the most appropriate 

confidence limit: Precision, Recall and F-score. Precision 

represents the ratio between the number of successfully 

detected anomalies and the total number of detected 

anomalies and is used to measure the accuracy of anomaly 

detection model. Accuracy metrics can be misleading because 

the model will tend to detect the small number of anomalies in 

order not to make inaccurate detections. The recall represents 

the ratio between the number of successfully detected 

anomalies and the total number of anomalies present in the 

dataset and is used to measure the percentage of detected 

anomalies. Recall metrics can be misleading because the 

model will tend to detect the huge number of anomalies in 

order detect all anomalies. In order to create the balance 

between precision and recall metrics F-score metrics represent 

the hybrid solution between precision and recall metrics. 

IV. EXPERIMENTAL RESULTS 

Anomalies occur when certain SMART parameters deviate 

from normal values, which usually lead to disk drive failure. 

We applied generic anomaly detection method based on 

statistical distribution [8] to create algorithm for drive failure 

prediction based on the most critical SMART. In order to 

achieve high accuracy of failure prediction, we choose 

precision as a metric for determining confidence limit.  

Anomaly detection algorithm is applied on set of SMART 

indicators for Seagate ST3000DM001 disk drive. Data set 

contained entries for 4255 ST3000DM001 drives which 

operated for 1081649 hours from February 2014 to November 

2015, from which 1357 have failed during regular operation. 

The dataset contains 24 SMART indicators represented in 

both raw and normalized form shown in Table I, among 

which the ones most likely to indicate failure were used for 

failure prediction. 

SMART 1 (Read Error Rate) indicator represents the rate of 

hardware read errors that occurred during reading data from a 

disk surface. SMART 5 (Reallocated Sectors Count) indicator 

represents a number of bad sectors that have been remapped 

to spare area. SMART 7 (Seek Error Rate) indicator 

represents seek errors of magnetic heads caused by the partial 

failure in the mechanical positioning system. SMART 183 

(Runtime Bad Block) represents a total number of 

uncorrectable errors encountered during normal operation. 

SMART 187 (Reported Uncorrectable Errors) represents a 

number of errors that could not be recovered by hardware 

error code correction. SMART 189 (High Fly Writes) 

represents a number of write operations performed when a 

recording head is flying outside its normal operating range. 

SMART 193 (Load Cycle Count) represents a number of 

cycles when magnetic heads are put into head landing zone 

position, as a result of power saving. SMART 197 (Current 

Pending Sector Count) represent the number of unstable 

sectors which are waiting to be remapped.  



 

TABLE I 

LIST OF MONITORED SMART INDICATORS 

 

 

Dataset is separated into two subsets, first containing 2989 

healthy drives and second containing 1357 failed drives. The 

training set is composed of 60 % population of healthy drives 

in order to determine statistical distributions of important 

smart parameters, which are shown in Table II. Training set 

contained data from 1739 healthy drives with 516483 entries. 

 
TABLE II 

NORMAL DISTRIBUTIONS OF IMPORTANT SMART INDICATORS 

 

SMART Indicator Mean µ Standard deviation σ 

SMART 1 115.29 3.89 

SMART 5 99.86 1.83 

SMART 7 83.72 6.66 

SMART 183 96.80 15.87 

SMART 187 98.26 8.46 

SMART 189 95.95 14.28 

SMART 193 51.13 36.39 

SMART 197 99.999 0.57 

  

The confidence limit ε for anomaly detection was 

determined using cross-validation set, composed from data of 

20 % of healthy drives and data of 50 % of failed drives. It 

contained data from 579 healthy drives and 679 failed drives 

with a total number of entries 291407. Confidence limit for 

selected SMART indicators was varied in range (10
-60

 ÷ 10
-10

) 

were most suitable metrics chosen for anomaly detection was 

precision. The results show that very high precision of 

anomaly detection was achieved, as high as 0.936. 

 
Fig. 2. Precision, Recall and F-score for various value of confidence limit 

 

In order to measure the real accuracy of proposed anomaly 

detection model, the independent test set was composed of 

data from remaining 20 % of healthy drives and remaining of 

50 % of failed drives. It contained data from 580 healthy 

drives and 678 failed drives with a total number of entries 

273759. Selected Confidence for highest precision in cross-

validation set was used to detect anomalies in the test set and 

results are presented in Table III. Results show that high 

precision of 0.911 was kept with the test set, with the recall of 

0.304. The number of detected anomalies was 206 of 678 with 

only 20 false anomalies detected. Furthermore, some of the 

SMART indicators were discarded from the model in order to 

further improve the accuracy of anomaly detection. When 

indicators SMART 1 and SMART 7 were omitted, 210 of 678 

failures were detected with 19 false alarms. Furthermore, 

using just most important indicators SMART 5, SMART 187 

and SMART 197, we were able to increase the precision with 

230 of 678 failures detected with 20 false alarms.  

 
TABLE III 

NORMAL DISTRIBUTIONS OF IMPORTANT SMART INDICATORS 

 

Used 

SMART 

indicators 

SMART 1 

SMART 5 

SMART 7 

SMART 183 

SMART 187 

SMART 189 

SMART 193 

SMART 197 

SMART 5 

SMART 183 

SMART 187 

SMART 193 

SMART 197 

SMART 5 

SMART 187 

SMART 197 

Cross validation     

Precision 0.936 0.938 0.940 

Recall 0.283 0.287 0.325 

F-score 0.434 0.439 0.484 

ε 1·10
-30

 1·10
-24

 5·10
-14

 

Test set    

Precision 0.911 0.917 0.920 

Recall 0.304 0.310 0.339 

F-score 0.456 0.463 0.496 

True positive 206 210 230 

False negative  472 468 448 

False positive 20 19 20 

SMART indicator 

Apr 2013  

Jan 2014 

Feb 2014  

Nov 2015 

Raw Norm Raw Norm 

SMART 1 - Read Error Rate +  + + 

SMART 3 - Spin Up Time   + + 

SMART 4 - Start Stop Count   + + 

SMART 5 - Reallocated Sector Count +  + + 

SMART 7 - Seek Error Rate   + + 

SMART 9 - Power On Hours +  + + 

SMART 10 - Spin Retry Count   + + 

SMART 12 - Power Cycle Count   + + 

SMART 183 - Runtime Bad Block   + + 

SMART 184 - End to End Error   + + 

SMART 187 - Reported Uncorrected   + + 

SMART 188 - Command Timeout   + + 

SMART 189 – High Fly Writes   + + 

SMART 190 - Airflow Temperature   + + 

SMART 191 - G-Sense Error Rate   + + 

SMART 192 – Power-off Retract Cnt   + + 

SMART 193 - Load Cycle Count   + + 

SMART 194 – Drive Temperature +  + + 

SMART 197 - Current Pending Sector +  + + 

SMART 198 - Offline Uncorrectable   + + 

SMART 199 - UDMA CRC Error Cnt   + + 

SMART 240 - Multi Zone Error Rate   + + 

SMART 241 - Total LBAs Written   + + 

SMART 241 - Total LBAs Read   + + 



 

 

Developed anomaly detection model was further analyzed 

in order to determine the time lag between failure prediction 

and actual failure of the drive. One example of the lifetime 

operation of the drive with serial number W1F08JSX was 

shown in Figure 3. Indicators SMART 5 and SMART 187 

started to decline and anomaly detection model predicted 

failure after 97 operating days. The actual failure occurred 

after 154 operating days. Furthermore, we analyzed time 

taken between failure prediction and actual failure for all 

failed drive which is presented by the histogram in Figure 4. 

Results show that anomaly detection algorithm provided on 

average 38.9 days warning prior actual failure of HDD. 

 

 
Fig. 3. Example of failure prediction for drive with serial number W1F08JSX 

 
Fig. 4. Histogram of time between failure prediction and actual drive failure 

V. CONCLUSION 

The possibility of predicting failures of hard disk drives 

enables the user to take preemptive actions in order to backup 

important data. In this paper, we presented anomaly detection 

algorithm which is capable of predicting failure of the hard 

disk drive using SMART indicators. Presented model 

achieved high precision of failure detection over 90 %. 

Proposed anomaly detection model provided on average 38.9 

days warning prior the actual failure of hard disk drive.  
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