

Abstract—RAID storage technology improves the reliability of
the computer storage systems. Hardware RAID 6 systems have
been traditionally using Reed-Solomon codes. However, in
software RAID 6 systems, different coding schemes can be
employed. Parity array algorithms show satisfactory results, as
they display significantly higher execution speed. In this paper,
we have evaluated parity array EVENODD algorithm as a
candidate for RAID 6. We have listed its main advantages
compared to the similar algorithms. Additionally, we have shown
the performance improvements that can be achieved through its
parallelization on general multicore processors.

Index Terms— Parallel Algorithms; RAID; Reliability;

I. INTRODUCTION

The reliability of a system is an ability to run it for a long

period of time without failures [1]. Reliability can be

expressed through the MTTF (Mean Time To Failure) or

MTBF (Mean Time Between Failures) factors. MTTF is the

average time during which no equipment failures will occur.

MTBF represents average time between unrecoverable errors

on a drive of a given type [2].

In the recent years, MTTF and MTBF factors for a single

drive have been improving. However, if we have a system

with N drives, the resulting MTTF and MTBF factors would

be N times worse. Today’s large-scale storage systems

comprise thousands of drives, and if no additional redundancy

is introduced, the resulting MTTF would be unacceptably low.

In order to improve the reliability, disks are organized in

RAID systems (Redundant Array of Independent Disks).

RAID is a data storage technology that combines multiple

physical disk drives into single logical unit. Multiple RAID

levels have been defined, with differences in reliability and

performance. Standard RAID levels are numbered from 0 to 6

and the most common types are RAID 0, RAID 1, RAID 5

and RAID 6.

In a RAID 6 system, two coding nodes are used, usually

labeled as the P and Q drives. This means that the system can

recover from the state where two drives have failed

Mihailo Vesović is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

mikives@gmail.com).

Borislav Đorđević is with the School of Electrical Engineering, University

of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

bora@impcomputers.com).

Aleksandra Smiljanić is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia

(e-mail: aleksandra@etf.rs).

simultaneously. The P drive is defined as a simple parity

drive. The definition of the Q drive is not standard, which

means that different coding schemes can be used. The

requirement is that the resulting code must be maximum

distance separable (MDS) [3-4].

Today, we can choose between hardware and software

based RAID solutions. Hardware RAID solutions can provide

higher speeds. On the other side, software solutions are

cheaper and more flexible, especially in the case of RAID 6

where the coding algorithm is not predetermined [4].

The recovery time for one disk is dependent on multiple

factors: number of drives, total capacity, sustained data rates,

etc. In software RAID systems, the processor frequency also

influences the recovery time. Performance of RAID 6

software system can be improved by the appropriate choice of

an optimal algorithm. Its speed can be improved by executing

the algorithm simultaneously on multiple processor cores, i.e.

by parallelization.

In this paper, we aim to improve the performance of

EVENODD algorithm [5]. EVENODD is a well-known

algorithm belonging to the group of parity array algorithms.

Parity array algorithms have advantage compared to the others

because they are not based on multiplication, which is

expensive operation. Furthermore, EVENODD is a good

candidate for parallelization, as it inherently has little

sequential dependencies.

II. THEORETICAL BACKGROUND

A. RAID 6

In a RAID 6 system, there are m + 2 drives in total: m data

disks, labeled D0, D1, … , Dm−1, and 2 redundant disks, labeled

Dm (or P drive) and Dm+1 (or Q drive). Let us assume that each

disk is divided into small data blocks of equal size. The size

of each block is B symbols, where the symbol size can be

arbitrary.

Group of blocks placed on the same position on different

drives is called a stripe (see Fig. 1). Encoding and decoding

are performed on the stripe level. This means that encoding of

the k-th block on Dm or Dm+1 disk will be based on only k-th

blocks of the data disks Di, 0,..., 1i m .

B. Erasure Coding Algorithms

In RAID 6 system, Q disk is usually encoded by using

Reed-Solomon coding scheme [6]. Reed-Solomon coding is

based on the Galois Field GF(2
x
) arithmetic. GF addition and

subtraction are equivalent to exclusive OR (XOR, ⊕)

Improving Software RAID 6 Systems by the

Means of Parallelization

Mihailo Vesović, Graduate Student Member, IEEE, Borislav Đorđević, Member, IEEE, and

Aleksandra Smiljanić, Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. RTI1.7.1-6

operation. Multiplication, on the other hand, requires the

addition of exponents, which is expensive operation.

Therefore, other coding techniques are being considered.

 stripe

...

D0 D1 Dm-1 Dm Dm+1

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

Fig. 1. Illustration of data (D0-Dm−1) and parity (Dm, Dm+1) disks composed of

the multiple equal-sized blocks. Stripe is a sequence of blocks at the same

position on different disks.

Another important class of algorithms are parity array

algorithms, in which all the coding can be expressed through

the use of XOR operation. First parity array algorithm that

was proposed was EVENODD algorithm [5]. In the following

years, numbers of similar algorithms have been proposed,

such as Liberation [4], RDP [7], etc. EVENODD algorithm

performs better than Reed-Solomon due to the fact that XOR

is much simpler operation than multiplication. Liberation

algorithm is considered as a good alternative to EVENODD,

due to the fact that it is not patented [4].

There were other numerous codes mentioned in the

literature, like X-Code [8], STAR [9], etc. These algorithms

are either not horizontal or MDS codes, and thus cannot apply

to RAID 6 system. There are also algorithms which propose

the use of 3 or more coding drives, like RTP [10]. Since

RAID 6 uses only 2 coding drives, these algorithms are also

out of scope for RAID 6.

1) EVENODD

EVENODD is a parity array algorithm designed for

tolerating double disk failure in RAID 6 systems. In the case

EVENODD algorithm, size of the block must be 1B m ,

where m is the number of drives excluding coding drives. This

restriction is not crucial, since m is small and the number of

blocks is large.

Encoding procedure: The disk Dm is calculated as the

simple parity of data disks, according to (1):

1

, ,
1

, 0 2
m

l m l t
t

a a l m

 (1)

The content of disk Dm+1 is calculated using (2):

1 1

, 1 1 , ,
1 0

, 0 2
m

m m

l m m t t l t t
t t

a a a l m

 (2)

Decoding procedure: We differentiate 4 different recovery

cases based on which two disks have failed.

In the case when Dm and Dm+1 redundant disks have failed,

i.e. , 1i m j m , the decoding procedure is effectively the

same as the encoding procedure.

If the Di and Dm disks have failed, i.e. ,i m j m , the

decoding procedure is performed according to the (3), (4) and

(1):

1

1 , 1 1 ,
0

m m

m

i m i l l
l

S a a

 (3)

1

, , 1 ,
0

, 0 2
m m

m

k i k i m k i l l
l
l i

a S a a k m

 (4)

In the case where Di and Dm+1 disks have failed, i.e.

, 1i m j m , we use (1) to reconstruct the disk Di, and (2)

to reconstruct Dm+1 disk.

The most complex case is when two data disks Di and Dj

have failed, i j m . In order to reconstruct the data, we

must first find diagonal parity (5), and horizontal (6) and

vertical syndromes (7):

2 2

, , 1
0 0

m m

l m l m
l l

S a a

, (5)

 (0)
,

0
,

, 0 1
m

u lu
l
l i j

S a u m

 , (6)

1

(1)
, 1 ,

0
,

, 0 1m

m

u m u l lu
l
l i j

S S a a u m

. (7)

Afterwards, we do the following recursive procedure:

1. 1,1 ; 0, 0 1m l
m

s i j a l m ,

2.
,

(0) (1)
, , ,,

m i
m

s i s j s j s j is j s
a S a a S a ,

3.
m

s s i j ,

4. If 1s m stop. Otherwise go to the step 2.

2) Liberation

Liberation algorithm is considered for standard coding

procedure for RAID 6. Size of the block is B w , where

1w must be prime number and greater or equal than number

of data disks, m.

 The encoding procedure starts with the creation of binary

matrix of size 2w m wm , called Binary Distribution

Matrix (BDM). BDM is multiplied with vector column

containing wm symbols from all the data blocks in a given

stripe. As a result, we get vector column of (2)w m

symbols, which represents the vector of all the symbols in a

stripe. Last 2w symbols are written on P and Q drives.

Decoding procedure relies on the creation of new wk wk

BDM’ matrix using the data from surviving devices. The

algorithms for generating BDM matrices are omitted for the

sake of clarity, but may be found in [4].

BDM matrix is sparse, which means that there are small

number of non-zero elements. Thus, matrix multiplication will

have many zero dot products. Therefore, authors propose

technique called bit matrix scheduling. From the BDM matrix,

schedule is created. Rather than traversing the whole matrix,

the 5-tuples list <op, sd, sb, dd, db> is created [11]. Field op

specifies the operation (assignment or XOR), and other fields

identify the data on which op operation is performed (on

which drives are the source and destination operands located,

and the position of the operands on the drives).

C. Jerasure

Jerasure [11] is a C library that implements multiple erasure

coding algorithms. It supports horizontal mode of erasure

codes. Among implemented, there are Reed-Solomon, Cauchy

Reed-Solomon and Liberation codes. Jerasure is dependent on

GF-Complete library, which implements Galois Field

arithmetic.

D. Parallelization

In order to speed up any program, capabilities of the

processors must be fully utilized. As the frequency scaling of

the processors has stalled in recent years, trends have shifted

towards integrating multiple cores on chip [12]. Therefore,

execution of algorithms on the multiple cores is a way to

improve their performance.

OpenMP is an API (Application Programing Interface) that

allows high level parallelization of the programs. OpenMP is

a collection of compiler directives, library routines, and

environment variables for parallelism in C, C++ and Fortran

programs [13]. It is intuitive, simple, and offers various other

benefits to programmers (easy to read code, minimized race

conditions etc.). It is intended for the systems with shared

memory.

In order to further improve the performance, coprocessors

and graphic cards can be used. Coprocessor cards have up to

hundred processing cores which execute offloaded code. E.g.,

XeonPhi 31S1P coprocessor card [14] consists of 57 cores.

XeonPhi cores also have VPU (Vector Processing Unit) which

is ideal for the arithmetic or logic operations performed on

large arrays of data [15]. Graphic cards comprise hundreds to

thousands cores, however, their capabilities are much more

limited comparing to the coprocessor cores. E.g., NVIDIA

Tesla K20 GPU accelerator [16] has 2496 simpler cores and

can easily cost ~ 3000 USD.

III. IMPLEMENTATION

We have chosen EVENODD algorithm because it is well-

known parity array algorithm, easy to implement and

understand, and has potential for parallelization. Parity array

algorithms in general rely on exclusive OR operation which is

standard logical operation and which can be easily vectorized

if performed on the array data. Additionally, it allows easier

parallelization, as it is the operation on which reduction can be

done in OpenMP.

We have implemented parallelized version of EVENODD

algorithm in the C programing language. Parallelization was

done using OpenMP API. Program was compiled with the

GCC 5.4 version with optimizations level 3 (-O3) turned on.

The main program is divided into four parts. The first part

of the program is the initialization of data structures. The

second part is the encoding of the P and Q disks, based on the

chosen pattern (random, ordinary numbers, etc). Encoding

times are measured and saved in output file. In the third part,

we assume that two data drives have failed, based on the user

input. The decoding procedure is initialized, and the decoding

times are measured. In the last part, results are compared to

check whether the simulation was successful.

Let us assume that the total number of data drives in the

system is m. Data and parity disks are represented as 2D array

of integers, called data, with m rows and m + 2 columns.

Columns 0,1,..., 1i m represent data drives Di, while

columns m and m + 1 represent the P and Q drives. Results are

stored in the 2D array rdisks[m][2]. This array has only two

columns, since we can tolerate simultaneous failures of two

disks. The first column is reserved for the disk with smaller

ID.

There are 4 decoding functions, depending on which drives

have failed:

 decode_c0_c1_lost (Fig. 2) is called when both parity

drives have failed;

 decode_di_c0_lost (Fig. 3) is called when one data drive

and the P parity drive have failed;

 decode_di_c1_lost (Fig. 4) is called when one data drive

and the Q parity drive have failed;

 decode_di_dj_lost (Fig. 5) is used when two data drives

have failed, which is the most common case.

Function arguments f, f1 and f2 specify what the indices of the

lost data drives are. All the decoding functions are based on

the equations from the section II.

DECODE_C0_C1_LOST (int m, int** data, int** rdisks)

 dpar = 0

 for t = 0 to m − 1:
 dpar ^= data[m − 1 − t][t]
 #pragma omp parallel for
 for l = 0 to m − 2

 rdisks[l][0] = 0

 rdisks[l][1] = dpar

 for t = 0 to m − 1:
 rdisks[l][0] ^= data[l][t]

 rdisks[l][1] ^= data[mod(l − t, m)][t]

 return

Fig. 2. Pseudo-code of the decoding function when the P drive and the Q

drive have failed simultaneously

Generally, each decoding function can be split into three parts

– calculation of diagonal parity (variable dpar), reconstruction

of the first disk and reconstruction of the second disk. The

diagonal parity calculation is performed by using the for loop

which contains instruction with XOR operation. Since

OpenMP has a reduction mechanism for the XOR operation,

parallelization is possible. It is not advisable to perform

parallelization in all cases, because of the large overhead.

Therefore, we have parallelized only the dpar calculation in

the function decode_di_dj_lost. Reconstruction procedures

and the calculation of horizontal (hsyn) and vertical

syndromes (vsyn) are implemented as nested for loop. The

outer for loop of all the functions can be parallelized, as its

iterations can be performed in any order, i.e. there are no

sequential dependencies between them.

 In the function decode_di_dj_lost, the last part represents

the recursive procedure. In order to calculate the data

rdisks[s][1] it is necessary to calculate the data rdisks[mod(s +

f2 − f1, m)][0] first. The variable s must be traversed in

specific order, starting from the s = mod (f1 − f2 − 1, m).

Therefore, it is impossible to parallelize this section, which

consequentially yields higher execution times.

DECODE_DI_C0_LOST (int m, int f, int** data, int** rdisks)

 dpar = data[mod(f − 1, m)][m + 1]

 for t = 0 to m − 1:
 dpar ^= data[mod(f − t − 1, m)][t]

 #pragma omp parallel for
 for k = 0 to m − 2

 rdisks[k][0] = dpar ^ data[mod(k + f, m)][m + 1]

 for l = 0 to m − 1:
 if (l == f) continue

 rdisks[k][0] ^= data[mod(k + f − l, m)][l]

 #pragma omp parallel for

 for l = 0 to m − 2:
 rdisks[l][1] = 0

 for t = 0 to m − 1:
 if (t == f):

 rdisks[l][1] ^= rdisks[l][0]

 else:

 rdisks[l][1] ^= data[l][t]

 return

Fig. 3. Pseudo-code of the decoding function when the P drive and one data

drive have failed simultaneously

DECODE_DI_C1_LOST (int m, int f, int** data, int** rdisks)

 dpar = 0

 for l = 0 to m − 2:

 rdisks[l][0] = data[l][m]

 for t = 0 to m − 1:
 if (t == f) continue
 rdisks[l][0] ^= data[l][t]

 for t = 0 to m − 1:
 if (t == f):

 dpar ^= rdisks[m − 1 − t][0]

 else:

 dpar ^= data[m − 1 − t][t]
 #pragma omp parallel for

 for l = 0 to m − 2:
 rdisks[l][1] = dpar

 for t = 0 to m − 1:
 if (t == f):

 rdisks[l][1] ^= rdisks[mod(l − t, m)][0]

 else:

 rdisks[l][1] ^= data[mod(l − t, m)][t]

 return

Fig. 4. Pseudo-code of the decoding function when the Q drive and one data

drive have have failed simultaneously

Encoding and decoding times were measured using

omp_get_wtime () OpenMP function. Encoding and decoding

procedures were ran multiple times, and the mean values were

calculated.

Number of disks, blocks, threads, IDs of failed disks and

number of measurements are all passed as arguments to the

program. Results are written to the textual output files. Output

files are interpreted by python language, and graphs were

created. For the graphs creation, we have used matplotlib

library.

DECODE_DI_DJ_LOST (int m, int f1, int f2, int** data, int** rdisks)

 dpar = 0

 #pragma omp parallel for reduction(^:dpar)
 for l = 0 to m − 2:
 dpar ^= data[l][m]

 dpar ^= data[l][m + 1]

 #pragma omp parallel for
 for u = 0 to m − 1:

 hsyn[u] = 0

 vsyn[u] = dpar ^ data[u][m + 1]

 for l = 0 to m − 1:

 if ((l == f1) || (l == f2)) continue

 hsyn[u] ^= data[u][l]

 vsyn[u] ^= data[mod(u − l, m)][l]

 hsyn[u] ^= data[u][m]

 s = mod(f1 − f2 − 1, m)

 while (s != (m − 1)):

 rdisks[s][1] = vsyn[mod(f2 + s, m)] ^ rdisks[mod(s + f2 − f1, m)][0]

 rdisks[s][0] = hsyn[s] ^ rdisks[s][1]

 s = mod(s + f1 − f2, m)

 return

Fig. 5. Pseudo-code of the decoding function when two data drives have

failed simultaneously

We set the number of threads with omp_set_num_threads ()

function. Parallelization is done by using pragma #pragma

omp parallel for. This pragma divides the iterations of the

following FOR loop, and they will be executed on different

threads. The way in which iterations are divided is specified

through schedule () option. In our case, we have used

schedule (static, 16) or schedule (auto) options.

Schedule (static, 16) option divides all iterations of the

following FOR loop into groups of 16, and gives to each

thread different group of iterations to execute. By doing so,

we can minimize the false sharing. If we calculate diagonal

parity, it is better to use schedule (auto) option, in which the

compiler will decide about the best possible scheduling

technique. We have also tried dynamic scheduling options,

and static schedule options with different numbers of

iterations in group, but the results were poorer.

IV. TESTING

Characteristics of testing machine are presented in Table I.

We have measured execution times of encoding and decoding

procedures, and then converted them into bit rate. For each

test, measurements were done 10 times in total, and the mean

value was calculated.

TABLE I

TESTING MACHINE CHARACTERISTICS

Processor Intel Xeon E5-2620v3 @ 2.4 GHz
Number of cores 6 per processor, 2 threads per core

Cache size L1 = 32K + 32K; L2 = 256K; L3 = 15M

RAM size 64GB DDR3 @ 1866 MHz

OS RHEL 7.2

We have measured encoding and decoding times for

sequential and parallelized EVENODD algorithm for different

number of threads. Decoding times were measured for 4

cases, depending on which 2 drives have failed in the system

– two data drives (Di and Dj), two parity drives (P and Q), or

one data and one parity drive (Di and P or Di and Q).

Decoding procedure in the case where P and Q drives have

failed is identical as the encoding procedure, and therefore we

have included only one graph.

Parallelized versions were tested for different number of

threads, up to the total number of cores. Higher number of

threads would be suboptimal, as the threads cannot be

executed simultaneously. Each thread was bound to the

separate core. We have also tested the impact of hyper

threading, but the results showed only minor performance

improvement.

V. RESULTS

In the Fig. 6 we can see the encoding performance of

EVENODD algorithm for different number of threads.

Sequential algorithm is better than all parallel versions if

number of disks is smaller than 19. For larger number of

disks, parallel versions are more than 1.8 times better. For the

6 threads, parallel version is up to 4.6 times faster.

Fig. 6. Encoding performance of EVENODD algorithm for different number

of threads

Fig. 7 shows the decoding performance in the case when

two data drives have failed. This is the most common

situation, as we have much more data disks than parity disks.

Sequential version is faster for the number of disks smaller

than 29. For the number of disks larger than 127, the best

option is to use parallelized EVENODD with 6 threads, as the

algorithm is around 5 times faster than sequential version. If

the number of disks is between 29 or 127, the speed is

optimized by different number of threads.

Fig. 8 shows the decoding performance of EVENODD

algorithm when one data drive have failed along with the P

parity drive. Sequential algorithm is better to use if the

number of disks is smaller than 17. For larger number of

disks, it is always better to use the parallel version with 6

threads. In the best case, parallel algorithm is around 5.6 times

better than the sequential algorithm.

Fig. 7. Decoding performance of EVENODD algorithm for different number

of threads in the case when two data drives have failed

Fig. 8. Decoding performance of EVENODD algorithm for different number

of threads in the case when the P drive and one data drive have failed

Fig. 9. Decoding performance of EVENODD algorithm for different number

of threads in the case when the Q drive and one data drive have failed

Results for the case when one data drive and the Q drive

have failed are presented in Fig. 9. Sequential version is the

best option for the number of disks smaller than 19. For larger

number of disks, it is better to use parallelized algorithm with

6 threads. However, improvements are slightly worse than in

previous cases. In the best case, parallel EVENODD

algorithm is better than the sequential one 2.2 times.

We have also considered the Liberation code as the

alternative to the EVENODD algorithm. We have compared

speeds of sequential Liberation algorithm and sequential

EVENODD algorithms. For the Liberation algorithm

implementation, we have chosen the jerasure library.

However, performance of the sequential Liberation algorithm

was poorer, as it can be seen in the Fig. 10.

From the Fig. 10, we can see that the encoding and

decoding speeds of sequential EVENODD are around 5 times

faster than the Liberation algorithm from jerasure library. For

the decoding, we have considered the case where two data

drives have failed. Results for the other combination of drives

were similar.

Fig. 10. Encoding and decoding speeds of sequential Liberation and

EVENODD algorithms in the case when two data drives have failed

VI. CONCLUSION

In order to improve the reliability of the computer storage

systems, RAID 6 is becoming popular as it allows the

recovery from two simultaneous disk failures. The first

recovery drive is defined to be a simple parity drive, while the

definition of the second drive is left open. Therefore, multiple

solutions have emerged, and the most promising candidates to

be used are the parity array algorithms.

Liberation algorithm is a parity array algorithm based on

EVENODD, which is considered as a good candidate for

RAID 6. In this paper, we have compared execution times of

sequential liberation and EVENODD algorithms, and

concluded that EVENODD performs five times better.

Additionally, EVENODD is easier to parallelize, as it is based

on XOR operation and has little sequential dependencies.

As the final contribution, we have parallelized the

algorithm by using OpenMP API. Parallel EVENODD shows

improvement for the large number of disks. In the most

common case when the two data drives have failed, parallel

EVENODD is the best option when the number of disks is

larger than 29. If the number of drives is larger than 127,

parallel EVENODD can be more than five times faster.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of

Science and Education (project TR-32022), and by companies

Telekom Srbija and Informatika.

REFERENCES

[1] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles

and Paradigms, Prentice Hall, 2007.

[2] S. Stanley, "MTBF, MTTR, MTTF & FIT Explanation of Terms," IMC

Networks, pp. 1-6, 2011.

[3] Intel corporation, "Intelligent RAID 6 Theory Overview and

Implementation," Intel, 2005.

[4] J. S. Plank , "The RAID-6 Liberation Codes," in FAST ’08: 6th USENIX

Conference on File and Storage Technologies, 2008.

[5] M. Blaum, J. Brady, J. Bruck and J. Menon, "EVENODD: An efficient

scheme for tolerating double disk failures in RAID architectures," IEEE

Transactions on computers, vol. 44, no. 2, pp. 192-202, 1995.

[6] I. S. Reed and G. Solomon, "Polynomial codes over certain finite

fields," Journal of the society for industrial and applied mathematics,

vol. 8, no. 2, pp. 300-304, 1960.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong and S.

Sankar, "Row-Diagonal Parity for Double Disk Failure Correction," in

Proceedings of the 3rd USENIX Conference on File and Storage

Technologies, 2004

[8] L. Xu and J. Bruck, "X-code: MDS array codes with optimal encoding,"

IEEE Transactions on Information Theory, vol. 45, no. 1, pp. 272-276,

1999.

[9] C. Huang and L. Xu, "STAR: An efficient coding scheme for correcting

triple storage node failures," IEEE Transactions on Computers, vol. 57,

no. 7, pp. 889-901, 2008.

[10] A. Goel and P. Corbett, "RAID triple parity," ACM SIGOPS Operating

Systems Review, vol. 46, no. 3, pp. 41-49, 2012.

[11] J. S. Plank, S. Simmerman and C. D. Schuman, "Jerasure: A library in

C/C++ facilitating erasure coding for storage applications-Version 1.2.,"

2008.

[12] R. Buchty, V. Heuveline, W. Karl and J. Weiss, "A survey on hardware-

aware and heterogeneous computing on multicore processors and

accelerators", Concurrency and Computation: Practice and Experience,

vol. 24, no. 7, pp. 663-675, 2011

[13] OpenMP Architecture Review Board, "OpenMP Application Program

Interface," 2005.

[14] Intel corporation, "Intel® Xeon Phi™ Coprocessor 31S1P," Intel,
[Online]. Available: https://ark.intel.com/products/79539/Intel-Xeon-

Phi-Coprocessor-31S1P-8GB-1_100-GHz-57-core. [Accessed 28. 4.

2017].

[15] J. Jeffers and J. Reinders, Intel Xeon Phi coprocessor high-performance

programming, Newnes, 2013.

[16] NVIDIA corporation, "Tesla K20 GPU Accelerator Board," NVIDIA,

[Online]. Available: https://www.nvidia.com/content/PDF/kepler/Tesla-

K20-Passive-BD-06455-001-v05.pdf. [Accessed 28. 4. 2017].

	I. Introduction
	II. Theoretical background
	A. RAID 6
	B. Erasure Coding Algorithms
	1) EVENODD
	2) Liberation

	C. Jerasure
	D. Parallelization

	III. Implementation
	IV. Testing
	V. Results
	VI. Conclusion
	Acknowledgment
	References

