
 

Abstract—Software switches can provide high level of 

flexibility and are commonly used in software defined 

networks. In recent years, development of software routers has 

shifted towards fast network I/O platforms such as netmap and 

DPDK that bypass slow kernel network stack. Recently, VALE 

software switch based on netmap platform has been improved 

with extension called mSwitch. The VALE architecture is 

redesigned and divided into two fundamental parts: switching 

fabric that forwards packets and switching logic module that 

determines destination port. In this paper, we present the 

mSwitch (VALE) architecture and guidelines for developing 

switching logic module. Through extensive tests, we determine 

performance of packet forwarding through mSwitch.   

 

Index Terms—mSwitch; fast network I/O; network 

performance evaluation; linux kernel modules.  

 

I. INTRODUCTION 

Software switches are becoming increasingly significant 

for various network environments such as software defined 

networks (SDN) and virtualized data centers. The virtual 

machines (VMs) usage in data centers significantly 

increases the number of virtual ports. Usually, hypervisors 

of virtual machines use software switches to forward 

packets between VMs and network through virtual and 

physical ports. Software switches are well-suited for 

forwarding packets between virtual ports and they are 

becoming more important part of the network as the number 

of virtual ports increases.  

Also, SDN rely their development on highly flexible 

software switches which allow research on commodity 

servers and easy modification of switching fabrics while 

retaining high packet rates. Software switches are frequently 

modified to add new protocols or to improve measurement 

and debugging features, and to add middlebox-like 

functions. These various network environments impose 

important requirements that software switches need to fulfill 

such as programable data plane, high packet rates, data 

security, efficient CPU usage and high port density. These 

features conflict each other and it is difficult to harmonize 

them. For example, flexibility and simple programable data 

plane improve speed of development cycles but other 

requirements such as data security should not be affected. 

Typically, software switches are based on a large 

programing code which includes kernel code, and changing 

the switch is a hard process that required expertise in many 

different fields of   network design and development. The 

Hasan Redžović is with the Innovation Center of School of Electrical 

Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 

Belgrade, Serbia (e-mail: hasanetf@live.com).  
Aleksandra Smiljanić is with the School of Electrical Engineering, 

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, 

Serbia (e-mail: aleksandra@etf.rs). 

examples of this type of software switches are Linux bridge 

module [1], FreeBSD switch [2] and Open vSwitch [3], and 

they all use kernel network stack as switching fabric to 

forward packets between ports [4]. 

The kernel network stack is composed of complex 

programing code which is designed to support wide variety 

of implementations and it is not optimized for high 

throughput NICs. Consequently, software switches based on 

kernel network stack neither provide high packet rate nor 

adequate flexibility. For this reason, different specialized 

frameworks emerged such as netmap [5] and data plane 

development kit (DPDK) [6]. These frameworks bypass 

kernel network stack and provide new, notably faster, I/O 

packet platform for network applications. These fast I/O 

platforms deliver unprocessed packets directly to network 

applications in user space, where just necessary logic can be 

implemented avoiding any redundant programing code. The 

software switches developed using netmap or DPDK 

platform can outperform software switches based on kernel 

network stack in various aspects, and, therefore, have higher 

potential for wide implementation [7]. There are two 

software switches based on DPDK platform: CuckooSwitch 

[8] and DPDK vSwitch [9]. The software switch developed 

on netmap platform is called VALE [10]. Recently, a VALE 

extension called mSwitch was added which redesigned 

architecture and implemented new features in order to 

achieve requirements of virtualized data center and SDN 

[11]. 

In this paper, we examine and analyze fast I/O platforms 

and describe what are benefits and challenges of these 

platforms. Then, we present detailed architecture of 

mSwitch (VALE) which contains two main parts: 1. 

switching fabric that is optimized for fast packet forwarding 

and port scaling; 2. switching logic that performs lookup 

and port configuration. Development guidelines for the 

switching logic module are described. Then, we, performed 

large number of tests using different network configurations 

to analyze various mSwitch features and to evaluate packet 

forwarding.      

The paper is organized as follows. The netmap and 

DPDK platforms are presented in Section 2. Sections 3 

describes mSwitch architecture and how to create switching 

logic. In Section 4, we present testing environment and 

described conducted tests. Section 5 analyzes and evaluates 

performance of mSwitch. Finally, Section 7 concludes the 

paper. 

II. FAST I/O NETWORK PLATFORMS 

Unfortunately, the packet throughput of Linux kernel 

network stack is not sufficient for more specialized 

workloads. The low performance is due to the complex 

kernel code which contains large number of systems calls 
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per packet, unnecessary packet processing procedure and 

data copying.   The Linux kernel can process only about 2-3 

million packets per second (Mpps) on server with moderate 

hardware components. This is not enough for software 

switches and other network applications, especially since the 

network cards are capable of handling much higher 

throughputs. The performance limitations of the Linux 

kernel network are nothing new, and, over the years, the 

specialized platforms were developed to overcome this 

problem. The most commonly used fast I/O platforms are 

DPDK and netmap. Mentioned platforms essentially rely on 

similar approach in accelerating packet throughput – 

bypassing kernel network stack and providing unprocessed 

packets directly to applications in user space. However, 

there are differences between DPDK and netmap. 

DPDK uses a number of optimizations such as huge 

pages, vector instructions, direct cache access, and, provides 

direct hardware access to/from user space (UIO). DPDK 

uses a run-to-completion scheduling model. This scheduling 

model means that NIC devices are accessed in polled mode 

without any interrupts on the fast path. The downside of 

DPDK design is untrusted interconnection between clients 

in DPDK-based switches. DPDK relies on multiqueue NICs 

with single root I/O virtualization (SR-IOV) to implement a 

protected data path. SR-IOV allows a single physical port to 

be shared between multiple virtual machines. However, SR-

IOV has some disadvantages such as necessary device 

support, VLAN filtering limitation to only 64 entries for 

certain Intel drivers, etc. Also, DPDK platform is using 

active polling which not only keeps processor cores always 

busy, but also makes it difficult to scale to large number of 

ports. DPDK performs unnecessary polling of idle ports. 

Two switches based on DPDK are CuckooSwitch and 

DPDK vSwitch. CuckooSwitch achieves high throughput 

when handling very large numbers of L2 rules, but it has 

high CPU utilization, does not support virtual ports, and 

does not have flexible switching logic because it targets 

replacing hardware Ethernet switches. Also, CuckooSwitch 

source code is not available. DPDK vSwitch takes the Open 

vSwitch code base and accelerates it by using DPDK, 

inheriting the disadvantages of DPDK already mentioned. 

The netmap platform is implemented with several kernel 

modules, and it uses shared unpaged memory to exchange 

packet data with applications in user space. The netmap 

creates Rx/Tx rings (netmap rings) in shared memory that 

replicate NIC rings. Through these netmap rings, application 

access the packets in user space, while NICs access the 

packets through original rings. The rings comprise slots that 

contain memory locations of packets. The access permission 

to the packet memory locations is handled by dynamically 

labeling two slots as head and tail. NICs access slots ranging 

from tail to head slot clockwise, and network applications 

access slots from head to tail slot clockwise. The relabeling 

of head and tail slots is triggered by calling system function 

from user space, and this procedure is called ring 

synchronization. Time-consuming system functions are only 

used during ring synchronization, and their impact on 

performance is mitigated by large number of processed 

packets. Also, in most cases of packet processing and 

forwarding, zero-copy optimization can be achieved by 

exchanging memory location between Tx and Rx rings. 

Unlike DPDK which relies on SR-IOV, netmap platform 

uses shared memory and kernel modules to provide secure 

access between netmap application and NICs ports. Also, 

there are no unnecessary polls of idle resources, enabling 

netmap applications to better utilize CPU cores and, in the 

case of software switches, to scale larger number of ports, 

when compared to DPDK. Although DPDK provides 

slightly better performance, netmap platform fulfill better 

other requirements of software switches such as efficient 

CPU usage and data security.  

The switch based on netmap platform is called mSwitch 

(VALE), and, recently, it was improved and redesigned to 

have the following features: 

 The mSwitch architecture is divided into two 

fundamental parts: data plane that switches packets 

between the ports and switching logic that decides on 

the packet’s destination port. The clear separation 

between data plane and switching logic increases 

flexibility and provides easer programmable interface 

for implementing new network features; 

 Improved scalability of virtual ports, so mSwitch can 

support up to 120 ports. The scalability is important as 

the number of virtual ports is constantly increasing;  

 Optimization of parallel access to a single port which 

enables high throughput when multiple senders collide 

onto single port.    

The mSwitch redesigns and improves software switch 

that could possibly meet all major requirements, and, it can 

be notably competitive to other software switches. In the 

following section, we described mSwitch architecture and 

how to create a simple switching logic.   

III. MSWITCH ARCHITECTURE AND SWITCHING LOGIC 

As we mentioned before, the main mSwitch modification 

is dividing architecture to switching fabric that forwards 

packets between ports and switching logic that implements 

lookup and port configuration. This separation supports 

mSwitch with fixed and stable high throughput, while 

providing users with customable and easy to use switching 

logic. Fig. 1 shows the mSwitch architecture with virtual 

and physical ports. The switching logic views abstract 

representation of each connected port as a unique index 

number in the switch. When a packet arrives to a port, 

switching logic uses arbitrary packet processing function to 

modify the packet if necessary and to determine its 

destination port. The virtual ports connected to the switch 

can provide access to different types of applications in user 

spaces: 

 The netmap applications – applications designed to use 

netmap API can also be connected to virtual ports, 

allowing multiple netmap applications to access single 

physical port. Without mSwitch, only one netmap 

application can use physical port at any single point in 

time;  

 QEMU virtual machines – QEMU hypervisor is 

modified to use netmap API and allows QEMU 

instances to be connected to the virtual ports;  

 All regular user space application – kernel network 

stack can be attached to virtual ports allowing all 



 

applications to communicate with the network through 

mSwitch. In this case, packets are traversing not only 

through mSwitch but also through kernel network stack 

which leads to low performance.  
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Fig. 1  mSwitch architecture is divided into two basic parts: switching 

fabric and switching logic. 
     

Physical ports are connected to the mSwitch using 

modified version of netmap API, providing much higher 

performance than the default drivers. Also, mSwitch utilizes 

receive side scaling technology implemented as a part of 

modern NICs that provides multiple packet queues. Each 

queue is mapped onto one ring that can be assigned to 

separate CPU core in order to scale the performance. 

Depending on a packet receiving port, packet forwarding is 

performed with the corresponding thread. User application 

threads execute packet forwarding for virtual ports and 

kernel threads execute forwarding of packets arriving to 

physical ports or kernel network stack. Thus, the multiple 

threads may contend for access to destination ports. The 

forwarding algorithm differs significantly from previous 

version of VALE in order to scale to large number of ports.   

The switching logic runs as a kernel module that can 

register to the switching fabric three custom function: 

lookup, port configuration and callback function in the case 

if some process dies, i.e., stops working. Fig. 2 shows 

structure of the kernel module implementing switching 

logic. Each kernel module contains two basic function: (i) 

Initialization function to register kernel module into kernel 

space and to assign that module to some device or process; 

(ii) Termination function to unregister kernel model and 

release all allocated resources.  

In the case of switching logic, the kernel module is 

assigned to mSwitch. The custom functions are registered 

using netmap API and structures provided by mSwitch. 

Thus, in order to compile switching logic as a kernel model 

it is necessary to provide not only kernel source code but 

also netmap source code. Registered custom functions are 

used according to the event driven principle – if packet 

arrives, the lookup function is used, if application sends 

configuration request, this request is processed by the 

configuration function, and if some port stops working the 

callback function reconfigures the resources. It is not 

mandatory for the switching logic to contain all three types 

of functions – if some of these custom functions are not 

provided, mSwitch will use the corresponding default 

functions. The mSwitch default lookup function is the 

learning bridge called netmap_bdg_learning. The 

termination function, shown in Fig. 2, unregisters custom 

functions by passing function pointers set to NULL to the 

switching fabric. Also, the termination function must release 

all allocated memory in kernel space or otherwise the 

memory will be lost until the system is rebooted. 
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Fig. 2  Structure of switching logic kernel module. 
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Fig. 3  Testing environment comprised two physical machines connected 
with 10 Gbit/s ports. 

 

We created simple switching logic module called 

swlog_bridge in order to test mSwitch packet throughput. 

The swlog_bridge comprises a basic lookup function that 

forwards packets from some port to another predetermined 

port. Our goal is to test performance of the switching fabric 

in order to determine how redesigned and improved features 

of mSwitch affect its overall performance. In the following 

sections, we describe conducted tests and analyze results.   

IV. TESTING ENVIRONMENT 

Our testing environment shown in Fig. 3 consists of two 

physical machines connected with two 10 Gbit/s links. Tests 

were performed on machine R1 where netmap platform and 

mSwitch were implemented. Application DPDK pktgen was 



 

implemented on machine R2 and used as a packet generator 

and measurement tool. The DPDK pktgen can generate 

different types of packets at the maximal packet rate of 

10 Gbit/s links (equivalent to 14.88 Mpps) and it also 

supports ARP protocol, which was useful for some of our 

tests. On both links, traffic was generated with a total 

maximal packet throughput of 29.76 Mpps. Essentially, in 

all tests, we measure the overall packet forwarding rate for 

different configurations. All test configurations are depicted 

in Fig. 4: 

 Test A: NIC ports are directly connected to kernel 

network stack; 

 Test B: NIC ports are connected to mSwitch with 

default lookup function netmap_bdg_learning; 

 Test C: NIC ports are connected to mSwitch and to 

kernel network stack through corresponding virtual 

ports. mSwitch uses default lookup function 

netmap_bdg_learning; 

 Test D: Same configuration as for test C, but 

swlog_bridge module was used as switching logic 

instead of default mSwitch functions. The swlog_bridge 

is configured to forward packets between NIC ports; 

 Test E: Same as previous configuration, but the 

swlog_bridge is configured to forward packets 

exclusively to virtual ports; 

 Test F: Netmap bridge application is directly connected 

to NIC ports using netmap API.  

In following section analyze results of described tests.  

V. PERFORMANCE EVALUATION 

The results of all tests described in previous section are 

shown in Fig. 5. Test A determines kernel network stack 

packet throughput without netmap API and mSwitch. The 

results of test A represent a benchmark for comparing all of 

the following measurements and determining how different 

configurations affect performance. The kernel network stack 

was able to forward 1.5 Mpps.  

Test B measures packet throughput of mSwitch with 

default lookup function netmap_bdg_learning. In this test 

mSwitch was able to achieve 28.1 Mpps which was 18 times 

faster processing than of the kernel network stack.  

In test C, kernel network stack was connected to mSwitch 

through the corresponding virtual ports. In this 

configuration, NIC port 1 and virtual port 1 have the same 

MAC addresses and this also applies to NIC port 2 and 

virtual port 2. When packet arrives on either of NIC ports, 

mSwitch default lookup function forward them to both 

virtual port and other NIC port. For example, if packet 

arrives on NIC port 1, it will be forward to virtual port 1 and 

NIC port 2. In this configuration mSwitch was able to 

forward 5.3 Mpps which was 3.5 times higher throughput 

than in the case of the kernel network stack, but 5.3 time 

lower than in the test B configuration. The configuration in 

test C is important because it allows all applications in user 

space to communicate with the network while providing 3.5 

times higher packet forwarding throughput for rest of the 

traffic.  

In test D, the configuration is the same as in test C but we 

used our switching logic swlog_bridge instead of 

netmap_bdg_learning. The swlog_bridge was adjusted to 

exclusively forward packet between NIC ports and ignore 

virtual ports. In this case, mSwitch was able to forward 

28.05 Mpps, which was almost the same as in test B. This 

result shows that idle virtual ports do not noticeably affect 

the performance. 
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Fig. 4. Configuration of all conducted tests. 
 

Test E measures packet throughput when swlog_bridge is 

adjusted to exclusively forward packet between NIC port 

and the corresponding virtual ports. In this case, packets are 

transferred between NIC and kernel network stack through 

mSwitch. The packet forwarding was done in kernel 

network stack and maximal packet throughput was 0.7 

Mpps. This was 2.1 times lower that in the test A. The test E 

configuration force packets through the switching fabric and 

kernel network stack which lowers the performance. 

Finally, test F measures netmap application performance 

without mSwitch, where applications are attached directly to 



 

NIC port using netmap API. The netmap bridge application 

was used that are very similar to swlog_bridge and 

netmap_bdg_learning. The maximal measured packet 

throughput in test F was 28.5 Mpps which is almost 

identical as results in tests B and D. The test F shows that 

network applications such as bridge based on the netmap 

API can have equal performance as the switching logic 

module of mSwitch. However, mSwitch has advantages as it 

can connect regular network stack to the ports. 

 
 
Fig. 5  Packet throughput for different configuration of machine R1.   

 

VI. CONCLUSION 

We have presented significance of software switches as a 

part network environment such as SDN and virtualized data 

centers. The kernel network stack has low packet processing 

performance due to the complex and non-optimized code 

and, as such, it is not a suitable environment for developing 

high-end software switches. We described most commonly 

used fast I/O platforms, and what are the basic challenges in 

creating software switch using these platforms. We have 

selected to analyze mSwitch as a software switch that is 

trying to fulfill all network requirements (flexibility, high 

throughput, low CPU utilization, high port density, etc.). 

The mSwitch architecture and its switching logic were 

described in details. Through performance evaluation of 

relevant scenarios, we have shown that mSwitch can achieve 

high packet forwarding throughputs. Compared to pure 

netmap solutions, mSwitch is able to connect regular 

network stack to the network as well. In this way, it allows 

utilization of legacy applications. 
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