

Abstract—Software switches can provide high level of

flexibility and are commonly used in software defined

networks. In recent years, development of software routers has

shifted towards fast network I/O platforms such as netmap and

DPDK that bypass slow kernel network stack. Recently, VALE

software switch based on netmap platform has been improved

with extension called mSwitch. The VALE architecture is

redesigned and divided into two fundamental parts: switching

fabric that forwards packets and switching logic module that

determines destination port. In this paper, we present the

mSwitch (VALE) architecture and guidelines for developing

switching logic module. Through extensive tests, we determine

performance of packet forwarding through mSwitch.

Index Terms—mSwitch; fast network I/O; network

performance evaluation; linux kernel modules.

I. INTRODUCTION

Software switches are becoming increasingly significant

for various network environments such as software defined

networks (SDN) and virtualized data centers. The virtual

machines (VMs) usage in data centers significantly

increases the number of virtual ports. Usually, hypervisors

of virtual machines use software switches to forward

packets between VMs and network through virtual and

physical ports. Software switches are well-suited for

forwarding packets between virtual ports and they are

becoming more important part of the network as the number

of virtual ports increases.

Also, SDN rely their development on highly flexible

software switches which allow research on commodity

servers and easy modification of switching fabrics while

retaining high packet rates. Software switches are frequently

modified to add new protocols or to improve measurement

and debugging features, and to add middlebox-like

functions. These various network environments impose

important requirements that software switches need to fulfill

such as programable data plane, high packet rates, data

security, efficient CPU usage and high port density. These

features conflict each other and it is difficult to harmonize

them. For example, flexibility and simple programable data

plane improve speed of development cycles but other

requirements such as data security should not be affected.

Typically, software switches are based on a large

programing code which includes kernel code, and changing

the switch is a hard process that required expertise in many

different fields of network design and development. The

Hasan Redžović is with the Innovation Center of School of Electrical

Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020

Belgrade, Serbia (e-mail: hasanetf@live.com).
Aleksandra Smiljanić is with the School of Electrical Engineering,

University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,

Serbia (e-mail: aleksandra@etf.rs).

examples of this type of software switches are Linux bridge

module [1], FreeBSD switch [2] and Open vSwitch [3], and

they all use kernel network stack as switching fabric to

forward packets between ports [4].

The kernel network stack is composed of complex

programing code which is designed to support wide variety

of implementations and it is not optimized for high

throughput NICs. Consequently, software switches based on

kernel network stack neither provide high packet rate nor

adequate flexibility. For this reason, different specialized

frameworks emerged such as netmap [5] and data plane

development kit (DPDK) [6]. These frameworks bypass

kernel network stack and provide new, notably faster, I/O

packet platform for network applications. These fast I/O

platforms deliver unprocessed packets directly to network

applications in user space, where just necessary logic can be

implemented avoiding any redundant programing code. The

software switches developed using netmap or DPDK

platform can outperform software switches based on kernel

network stack in various aspects, and, therefore, have higher

potential for wide implementation [7]. There are two

software switches based on DPDK platform: CuckooSwitch

[8] and DPDK vSwitch [9]. The software switch developed

on netmap platform is called VALE [10]. Recently, a VALE

extension called mSwitch was added which redesigned

architecture and implemented new features in order to

achieve requirements of virtualized data center and SDN

[11].

In this paper, we examine and analyze fast I/O platforms

and describe what are benefits and challenges of these

platforms. Then, we present detailed architecture of

mSwitch (VALE) which contains two main parts: 1.

switching fabric that is optimized for fast packet forwarding

and port scaling; 2. switching logic that performs lookup

and port configuration. Development guidelines for the

switching logic module are described. Then, we, performed

large number of tests using different network configurations

to analyze various mSwitch features and to evaluate packet

forwarding.

The paper is organized as follows. The netmap and

DPDK platforms are presented in Section 2. Sections 3

describes mSwitch architecture and how to create switching

logic. In Section 4, we present testing environment and

described conducted tests. Section 5 analyzes and evaluates

performance of mSwitch. Finally, Section 7 concludes the

paper.

II. FAST I/O NETWORK PLATFORMS

Unfortunately, the packet throughput of Linux kernel

network stack is not sufficient for more specialized

workloads. The low performance is due to the complex

kernel code which contains large number of systems calls

The Performance Evaluation of Netmap

Software Switch

Hasan Redžović, Junior Member, IEEE, Aleksandra Smiljanić, Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. TEI2.1.1-5

per packet, unnecessary packet processing procedure and

data copying. The Linux kernel can process only about 2-3

million packets per second (Mpps) on server with moderate

hardware components. This is not enough for software

switches and other network applications, especially since the

network cards are capable of handling much higher

throughputs. The performance limitations of the Linux

kernel network are nothing new, and, over the years, the

specialized platforms were developed to overcome this

problem. The most commonly used fast I/O platforms are

DPDK and netmap. Mentioned platforms essentially rely on

similar approach in accelerating packet throughput –

bypassing kernel network stack and providing unprocessed

packets directly to applications in user space. However,

there are differences between DPDK and netmap.

DPDK uses a number of optimizations such as huge

pages, vector instructions, direct cache access, and, provides

direct hardware access to/from user space (UIO). DPDK

uses a run-to-completion scheduling model. This scheduling

model means that NIC devices are accessed in polled mode

without any interrupts on the fast path. The downside of

DPDK design is untrusted interconnection between clients

in DPDK-based switches. DPDK relies on multiqueue NICs

with single root I/O virtualization (SR-IOV) to implement a

protected data path. SR-IOV allows a single physical port to

be shared between multiple virtual machines. However, SR-

IOV has some disadvantages such as necessary device

support, VLAN filtering limitation to only 64 entries for

certain Intel drivers, etc. Also, DPDK platform is using

active polling which not only keeps processor cores always

busy, but also makes it difficult to scale to large number of

ports. DPDK performs unnecessary polling of idle ports.

Two switches based on DPDK are CuckooSwitch and

DPDK vSwitch. CuckooSwitch achieves high throughput

when handling very large numbers of L2 rules, but it has

high CPU utilization, does not support virtual ports, and

does not have flexible switching logic because it targets

replacing hardware Ethernet switches. Also, CuckooSwitch

source code is not available. DPDK vSwitch takes the Open

vSwitch code base and accelerates it by using DPDK,

inheriting the disadvantages of DPDK already mentioned.

The netmap platform is implemented with several kernel

modules, and it uses shared unpaged memory to exchange

packet data with applications in user space. The netmap

creates Rx/Tx rings (netmap rings) in shared memory that

replicate NIC rings. Through these netmap rings, application

access the packets in user space, while NICs access the

packets through original rings. The rings comprise slots that

contain memory locations of packets. The access permission

to the packet memory locations is handled by dynamically

labeling two slots as head and tail. NICs access slots ranging

from tail to head slot clockwise, and network applications

access slots from head to tail slot clockwise. The relabeling

of head and tail slots is triggered by calling system function

from user space, and this procedure is called ring

synchronization. Time-consuming system functions are only

used during ring synchronization, and their impact on

performance is mitigated by large number of processed

packets. Also, in most cases of packet processing and

forwarding, zero-copy optimization can be achieved by

exchanging memory location between Tx and Rx rings.

Unlike DPDK which relies on SR-IOV, netmap platform

uses shared memory and kernel modules to provide secure

access between netmap application and NICs ports. Also,

there are no unnecessary polls of idle resources, enabling

netmap applications to better utilize CPU cores and, in the

case of software switches, to scale larger number of ports,

when compared to DPDK. Although DPDK provides

slightly better performance, netmap platform fulfill better

other requirements of software switches such as efficient

CPU usage and data security.

The switch based on netmap platform is called mSwitch

(VALE), and, recently, it was improved and redesigned to

have the following features:

 The mSwitch architecture is divided into two

fundamental parts: data plane that switches packets

between the ports and switching logic that decides on

the packet’s destination port. The clear separation

between data plane and switching logic increases

flexibility and provides easer programmable interface

for implementing new network features;

 Improved scalability of virtual ports, so mSwitch can

support up to 120 ports. The scalability is important as

the number of virtual ports is constantly increasing;

 Optimization of parallel access to a single port which

enables high throughput when multiple senders collide

onto single port.

The mSwitch redesigns and improves software switch

that could possibly meet all major requirements, and, it can

be notably competitive to other software switches. In the

following section, we described mSwitch architecture and

how to create a simple switching logic.

III. MSWITCH ARCHITECTURE AND SWITCHING LOGIC

As we mentioned before, the main mSwitch modification

is dividing architecture to switching fabric that forwards

packets between ports and switching logic that implements

lookup and port configuration. This separation supports

mSwitch with fixed and stable high throughput, while

providing users with customable and easy to use switching

logic. Fig. 1 shows the mSwitch architecture with virtual

and physical ports. The switching logic views abstract

representation of each connected port as a unique index

number in the switch. When a packet arrives to a port,

switching logic uses arbitrary packet processing function to

modify the packet if necessary and to determine its

destination port. The virtual ports connected to the switch

can provide access to different types of applications in user

spaces:

 The netmap applications – applications designed to use

netmap API can also be connected to virtual ports,

allowing multiple netmap applications to access single

physical port. Without mSwitch, only one netmap

application can use physical port at any single point in

time;

 QEMU virtual machines – QEMU hypervisor is

modified to use netmap API and allows QEMU

instances to be connected to the virtual ports;

 All regular user space application – kernel network

stack can be attached to virtual ports allowing all

applications to communicate with the network through

mSwitch. In this case, packets are traversing not only

through mSwitch but also through kernel network stack

which leads to low performance.

kernel space

user space

switching fabric

netmap application

or virtual machine

socket API

kernel network

stack

virtual

port n+1

virtual

 port 1

virtual

port n

NIC

port 1

NIC

port n

kernel modul
switching logic

netmap application

or virtual machine
applications. . .

n
e
tm

a
p
 A

P
I

n
e
tm

a
p
 A

P
I

. . .

. . .

Fig. 1 mSwitch architecture is divided into two basic parts: switching

fabric and switching logic.

Physical ports are connected to the mSwitch using

modified version of netmap API, providing much higher

performance than the default drivers. Also, mSwitch utilizes

receive side scaling technology implemented as a part of

modern NICs that provides multiple packet queues. Each

queue is mapped onto one ring that can be assigned to

separate CPU core in order to scale the performance.

Depending on a packet receiving port, packet forwarding is

performed with the corresponding thread. User application

threads execute packet forwarding for virtual ports and

kernel threads execute forwarding of packets arriving to

physical ports or kernel network stack. Thus, the multiple

threads may contend for access to destination ports. The

forwarding algorithm differs significantly from previous

version of VALE in order to scale to large number of ports.

The switching logic runs as a kernel module that can

register to the switching fabric three custom function:

lookup, port configuration and callback function in the case

if some process dies, i.e., stops working. Fig. 2 shows

structure of the kernel module implementing switching

logic. Each kernel module contains two basic function: (i)

Initialization function to register kernel module into kernel

space and to assign that module to some device or process;

(ii) Termination function to unregister kernel model and

release all allocated resources.

In the case of switching logic, the kernel module is

assigned to mSwitch. The custom functions are registered

using netmap API and structures provided by mSwitch.

Thus, in order to compile switching logic as a kernel model

it is necessary to provide not only kernel source code but

also netmap source code. Registered custom functions are

used according to the event driven principle – if packet

arrives, the lookup function is used, if application sends

configuration request, this request is processed by the

configuration function, and if some port stops working the

callback function reconfigures the resources. It is not

mandatory for the switching logic to contain all three types

of functions – if some of these custom functions are not

provided, mSwitch will use the corresponding default

functions. The mSwitch default lookup function is the

learning bridge called netmap_bdg_learning. The

termination function, shown in Fig. 2, unregisters custom

functions by passing function pointers set to NULL to the

switching fabric. Also, the termination function must release

all allocated memory in kernel space or otherwise the

memory will be lost until the system is rebooted.

switching logic

unloading switching logic from switching fabric

loading switching logic to switching fabric

initiation function:

 allocate memory;

 register custom functions to switching fabric;

termination function:

 release allocated memory;

 register default functions to switching fabric;

lookup

function

configuration

function

callback

function

Fig. 2 Structure of switching logic kernel module.

machine R2

machine R1

mSwitch

NIC

port 2

NIC

port 1

NIC

port 1

NIC

port 2

10 Gbit/s 10 Gbit/s

DPDK pktgen

Fig. 3 Testing environment comprised two physical machines connected
with 10 Gbit/s ports.

We created simple switching logic module called

swlog_bridge in order to test mSwitch packet throughput.

The swlog_bridge comprises a basic lookup function that

forwards packets from some port to another predetermined

port. Our goal is to test performance of the switching fabric

in order to determine how redesigned and improved features

of mSwitch affect its overall performance. In the following

sections, we describe conducted tests and analyze results.

IV. TESTING ENVIRONMENT

Our testing environment shown in Fig. 3 consists of two

physical machines connected with two 10 Gbit/s links. Tests

were performed on machine R1 where netmap platform and

mSwitch were implemented. Application DPDK pktgen was

implemented on machine R2 and used as a packet generator

and measurement tool. The DPDK pktgen can generate

different types of packets at the maximal packet rate of

10 Gbit/s links (equivalent to 14.88 Mpps) and it also

supports ARP protocol, which was useful for some of our

tests. On both links, traffic was generated with a total

maximal packet throughput of 29.76 Mpps. Essentially, in

all tests, we measure the overall packet forwarding rate for

different configurations. All test configurations are depicted

in Fig. 4:

 Test A: NIC ports are directly connected to kernel

network stack;

 Test B: NIC ports are connected to mSwitch with

default lookup function netmap_bdg_learning;

 Test C: NIC ports are connected to mSwitch and to

kernel network stack through corresponding virtual

ports. mSwitch uses default lookup function

netmap_bdg_learning;

 Test D: Same configuration as for test C, but

swlog_bridge module was used as switching logic

instead of default mSwitch functions. The swlog_bridge

is configured to forward packets between NIC ports;

 Test E: Same as previous configuration, but the

swlog_bridge is configured to forward packets

exclusively to virtual ports;

 Test F: Netmap bridge application is directly connected

to NIC ports using netmap API.

In following section analyze results of described tests.

V. PERFORMANCE EVALUATION

The results of all tests described in previous section are

shown in Fig. 5. Test A determines kernel network stack

packet throughput without netmap API and mSwitch. The

results of test A represent a benchmark for comparing all of

the following measurements and determining how different

configurations affect performance. The kernel network stack

was able to forward 1.5 Mpps.

Test B measures packet throughput of mSwitch with

default lookup function netmap_bdg_learning. In this test

mSwitch was able to achieve 28.1 Mpps which was 18 times

faster processing than of the kernel network stack.

In test C, kernel network stack was connected to mSwitch

through the corresponding virtual ports. In this

configuration, NIC port 1 and virtual port 1 have the same

MAC addresses and this also applies to NIC port 2 and

virtual port 2. When packet arrives on either of NIC ports,

mSwitch default lookup function forward them to both

virtual port and other NIC port. For example, if packet

arrives on NIC port 1, it will be forward to virtual port 1 and

NIC port 2. In this configuration mSwitch was able to

forward 5.3 Mpps which was 3.5 times higher throughput

than in the case of the kernel network stack, but 5.3 time

lower than in the test B configuration. The configuration in

test C is important because it allows all applications in user

space to communicate with the network while providing 3.5

times higher packet forwarding throughput for rest of the

traffic.

In test D, the configuration is the same as in test C but we

used our switching logic swlog_bridge instead of

netmap_bdg_learning. The swlog_bridge was adjusted to

exclusively forward packet between NIC ports and ignore

virtual ports. In this case, mSwitch was able to forward

28.05 Mpps, which was almost the same as in test B. This

result shows that idle virtual ports do not noticeably affect

the performance.

test F

test E

test D

test C

test B

test A

kernel network stack

NIC

port 1

NIC

port 2

netmap_bdg_learning

NIC

port 1

NIC

port 2

kernel network stack

virtual

port 1

virtual

port 2

netmap_bdg_learning

NIC

port 1

NIC

port 2

swlog_bridge

NIC

port 1

NIC

port 2

kernel network stack

virtual

port 1

virtual

port 2

swlog_bridge

NIC

port 1

NIC

port 2

kernel network stack

virtual

port 1

virtual

port 2

netmap API

NIC

port 1

NIC

port 2

Netmap bridge aplication

Fig. 4. Configuration of all conducted tests.

Test E measures packet throughput when swlog_bridge is

adjusted to exclusively forward packet between NIC port

and the corresponding virtual ports. In this case, packets are

transferred between NIC and kernel network stack through

mSwitch. The packet forwarding was done in kernel

network stack and maximal packet throughput was 0.7

Mpps. This was 2.1 times lower that in the test A. The test E

configuration force packets through the switching fabric and

kernel network stack which lowers the performance.

Finally, test F measures netmap application performance

without mSwitch, where applications are attached directly to

NIC port using netmap API. The netmap bridge application

was used that are very similar to swlog_bridge and

netmap_bdg_learning. The maximal measured packet

throughput in test F was 28.5 Mpps which is almost

identical as results in tests B and D. The test F shows that

network applications such as bridge based on the netmap

API can have equal performance as the switching logic

module of mSwitch. However, mSwitch has advantages as it

can connect regular network stack to the ports.

Fig. 5 Packet throughput for different configuration of machine R1.

VI. CONCLUSION

We have presented significance of software switches as a

part network environment such as SDN and virtualized data

centers. The kernel network stack has low packet processing

performance due to the complex and non-optimized code

and, as such, it is not a suitable environment for developing

high-end software switches. We described most commonly

used fast I/O platforms, and what are the basic challenges in

creating software switch using these platforms. We have

selected to analyze mSwitch as a software switch that is

trying to fulfill all network requirements (flexibility, high

throughput, low CPU utilization, high port density, etc.).

The mSwitch architecture and its switching logic were

described in details. Through performance evaluation of

relevant scenarios, we have shown that mSwitch can achieve

high packet forwarding throughputs. Compared to pure

netmap solutions, mSwitch is able to connect regular

network stack to the network as well. In this way, it allows

utilization of legacy applications.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of

Science and Education (project TR-32022), and companies

Telekom Srbija, and Informatika.

REFERENCES

[1] "Bridge," Linux Foundation, 2016. [Online]. Available:

https://wiki.linuxfoundation.org/networking/bridge

[2] "Bridging Advanced Networking," FreeBSD, [Online]. Available:
https://www.freebsd.org/doc/handbook/network-bridging.html.

[3] "Open vSwitch," Linux Foundation, 2016. [Online]. Available:

http://openvswitch.org/.

[4] P. Emmerich, D. Raumer, F. Wohlfar and G. Carle, "Performance

Characteristics of Virtual Switching," in 3rd International Conference

on Cloud Networking (CloudNet) , Luxembourg, 2014.

[5] L. Rizzo, "netmap: A Novel Framework for Fast Packet I/O," in

USENIX, Boston, 2012.

[6] Intel, "Data Plane Development Kit," [Online]. Available:
http://dpdk.org/.

[7] G. Pongracz, L. Molnar and Z. L. Kis, "Removing Roadblocks from

SDN: OpenFlow Software Switch Performance on Intel DPDK," in
European Workshop on Software Defined Networks (EWSDN), Berlin,

2013.

[8] D. Zhou, B. Fan, H. Lim, M. Kaminsky and D. G. Andersen,
"Scalable, High Performance Ethernet Forwarding with

CuckooSwitch," in Conference on emerging Networking EXperiments

and Technologies, Santa Barbara, 2013.

[9] "Intel DPDK vSwitch Getting Started Guide," 2013. [Online].

Available: https://01.org/sites/default/files/downloads/packet-

processing/intel_dpdk_vswitch_050f.pdf. [Accessed 2017].

[10] L. Rizzo and G. Lettieri, "VALE, a Switched Ethernet for Virtual

Machines," in USENIX Association is the Advanced Computing

Systems Association, Boston, 2012.

[11] M. Honda, F. Huici, G. Lettieri and L. Rizzo, "mSwitch: a highly-

scalable, modular software switch," in ACM SIGCOMM Symposium

on Software Defined Networking Research, Santa Clara, 2015.

