

Abstract - The constant development of communication

networks imposes big challenges when providing necessary

performance and keeping costs low. Successful network and

device design rely on testing tools which are capable of

simulating real network conditions. Normally, these tools

utilize various commonly used IP traffic models in order to

generate IP traffic. However, majority of those IP traffic

models are useful for specific traffic scenarios and fail to

adequately simulate wide range of different traffic patterns. In

this paper, we present new IP traffic generator based on

hidden Markov models (HMM). The important feature of

hidden Markov models is their ability to automatically adjust

parameters using Baum-Welch algorithm, which allows us to

record real IP traffic and dynamically create accurate

representation of that traffic. We develop application which

utilizes hidden Markov models that is capable of generating a

large number of different IP traffic patterns based on

measurements of live traffic.

Index Terms— Traffic Generation, Traffic Models, Hidden

Markov Models.

I. INTRODUCTION

The communication networks are constantly increasing in

order to cope with demands for lager network infrastructure

and new services. This growth of communication networks

requires efficient tools for analyzing and evaluation of their

performance. Quality of service needs to be of adequate

level to provide customer satisfaction and cost dictates

investment’s profitability. The network design must balance

between quality of service and cost by optimizing

performance to match real network conditions. Since traffic

models simulate those network conditions, they are the core

component of network performance evaluation and they

need to be very accurate. Different traffic models can be

used to generate IP traffic with the characteristics suited for

specific networks and devices. Some of the most widely

used traffic models are:

 Poisson distribution model is one of the oldest traffic

models and it was widely used in traffic scenarios that

comprise large number of independent traffic streams

[1].

 Pareto’s [2] and Weibull’s [3] heavy-tailed

Hasan Redžović is with the Innovation Center of School of Electrical
Engineering, University of Belgrade, 73 Bulevar kralja Aleksandra, 11020

Belgrade, Serbia (e-mail: hasanetf@live.com).

Aleksandra Smiljanić is with the School of Electrical Engineering,
University of Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade,

Serbia (e-mail: aleksandra@etf.rs).

Milan Bjelica is with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:

milan@etf.rs).

distributions are often used to describe self-similar

network traffic [4]. Heavy-tailed distributions have the

property of a long-range dependence.

 In ON-OFF model each input alternates between active

and idle periods with geometrically distributed

durations. This model can be used for modelling of

both system behavior and IP traffic scaling features [5].

 More complex models which are designed for specific

traffic types [6, 7].

These traffic models are not designed capture the

characteristics of arbitrary types of traffic loads. In the

majority of cases, the types of network and traffic determine

the choice of the traffic model used for analysis. If the

traffic model is not chosen correctly, the characteristics of

actual traffic will not be properly represented and that would

lead to under-estimation or over-estimation of network

performance. Traffic models should have a manageable

number of parameters, and parameter estimation should be

simple.

In this paper, we propose different traffic modeling

strategy based on hidden Markov models (HMMs) [8]. The

HMMs are normally used in speech recognition [9]. Speech

has temporal structure and can be encoded as a sequence of

spectral vectors spanning the audio frequency range. Each

sequence of vectors usually represents one word. For any

input sequence, HMM will produce occurrence probability

of that sequence. The speech recognition is done by creating

a large library of HMMs where parameters of each HMM

are adjusted to maximize probability of specific word. In

other words, each HMM represents one word. Then, input

sequence is put through library of HMMs and each of them

calculates the likelihood of its corresponding word. The

word with the highest likelihood is the result of estimation.

We used HMM as a statistical IP traffic model, where

input sequences are based of different traffic characteristics,

similarly as in [8]. We implemented application

hmm_ip_gen which is capable to record traffic in live

network, parse results, create input sequences, train HMMs

and generate output IP traffic. We, then, examined the

performance of our generator in the case of gaming and

streaming applications.

The paper is organized as follows. The principles of

HMMs and Baum-Welch algorithm [10] are presented in

Section 2. Sections 3 describes hmm_ip_gen application and

how HMM is utilized for IP traffic simulation. Section 4

describes testing environment. In Section 5, we analyze

results of conducted tests. Finally, Section 6 concludes the

paper.

IP Traffic Generator Based on

Hidden Markov Models

Hasan Redžović, Junior Member, IEEE, Aleksandra Smiljanić, Member, IEEE, and Milan Bjelica,

Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. TEI2.3.1-6

II. HIDDEN MARKOV MODEL AND BAUM-WELCH

ALGORITHM

The canonical probabilistic models for temporal or

sequential data is called Markov model. In Markov model, it

is assumed that future states only depend on the current

states and not on the events that occurred before it. A hidden

Markov model (HMM) is a Markov model with underlying

states that are not observable (hidden). The hidden states can

only be observed through another set of stochastic processes

that produce the sequence of observed symbols. In Markov

models, the state is directly visible to the observer, and,

therefore, the state transition probabilities are the only

defined parameters. In a hidden Markov model, the state is

not directly visible, instead, we can see only output symbol

(also named observation). Each state has a probability

distribution over the possible output observations.

Therefore, the sequence of observations generated by an

HMM gives some information about the sequence of states.

In HMM, the states are denoted as Q = {q1, q2,..., qN},

where N is the number of states in the model. State

transition matrix is defined as:

 (1) (), (q | q), 1,2,..., 1t t

ij ij j iN N
A a a P t T

 (1)

 We will estimate states based on certain observations

which are correlated with the states. Let us denote

observations as V = {v1, v2,..., vM} where M is the number of

observation values. The observation matrix correlates

observations with states

 (), (| q), 1,2,...,t t

jk jk k jN M
B b b P t T

 (2)

An initial state distribution is necessary to run the HMM

model:

 (t)

1
, (q), t 1i i iN

P

 (3)

The initial state distribution defines the likelihood to be in

each state at the beginning of observation. The matrices π, A

and B completely define HMM and they are usually written

as λ = (A, B, π). Observation sequence in time is denoted by:

1 2(, ...)TO (4)

Using HMM with defined parameters λ, it is possible to

determine the most likely state sequence that will produce

the observation sequence (4). In other word, by observing

the sequence (4), we can determine the most likely sequence

of states. There are three fundamental problems that can be

solved using HMMs:

 Problem 1: given a sequence of observation O and λ =

(A, B, π), find P(O| λ);

 Problem 2: given a sequence of observation O and λ =

(A, B, π), find optimal state sequence;

 Problem 3: given a sequence of observation O and

dimensions N and M, find the model λ = (A, B, π) that

maximizes probability of O.

Below, we are going to briefly describe efficient

algorithms for solving mentioned problems.

A. Solution to Problem 1

The direct computation of P(O|λ) is very hard and in

many cases not possible, because it requires 2TNT

multiplications. The recursive forward algorithm (also called

α-pass) is more efficient way to find P(O|λ). Let X = (x0, x1,

..., xT-1) be the state sequence. For t = 0, 1,..., T - 1 and i = 0,

1,..., N − 1, parameters αt(i) are defined:

0 1() (, ,..., ,x q |)t t t ii P (5)

The parameter αt(i) is the probability of the partial

observation sequence up to time t, where the underlying

Markov process is in state qi at time t. First, initial values are

computed:

00() , 0,1,..., 1i iOi b i N (6)

For t = 1, 2,..., T − 1 and i = 0, 1,..., N − 1, αt(i) are

recursively computed:

1

1

0

() ()
t

N

t t ji iO

j

i j a b

 (7)

Then, conditional probability P(O| λ) is computed:

1

1

0

(|) ()
N

T

i

P O i

 (8)

The forward algorithm requires N2T multiplications which

is much easier to calculate in comparison to 2NTT

multiplications required for direct approach.

B. Solution to Problem 2

Backward algorithm or β-pass is used for solving problem

2. The backward algorithm is almost analogous to forward

algorithm, but, in this case, calculation starts at the end and

goes toward the beginning of the observation sequence. For

t = 0, 1,…, T - 1 and i = 0, 1,…, N − 1, we define

parameters:

1 2 1() (, ... , |)t t t T t ii P o o o x q (9)

Then, the calculation process is roughly the same as in the

forward algorithm. First, initial values are defined:

1() 1 0,1,..., 1T i i N (10)

For t = T-2, T-3,…, 0 and i = 0, 1 … N − 1, parameters

βt(i) are recursively computed:

1

1

1

0

() ()
t

N

t ij jO t

j

i a b j

 (11)

Using forward and backward algorithms, we can calculate

parameters γt(i) which will be used to find the most likely

state qi at time t. For t = 0, 1,..., T - 1 and i = 0, 1,..., N – 1:

() (| ,)t t ii P x q O (12)

Parameter αt(i) measures the state probability up to time t

and βt(i) measures the state probability after time t, and γt(i)

can be calculated as:

() ()
()

(|)

t t

t

i i
i

P O

 (13)

It can be shown that the most likely state at time t is the

state qi for which γt(i) is maximal.

C. Solution to Problem 3 (Baum-Welch algorithm)

The values of λ = (A, B, π) can be adjusted to maximize

probability of some specified observation sequence. First,

“di-gamma” parameters need to be defined. For t = 0, 1,...,

T-2 and i, j ∈ {0, 1,…, N-1}:

1(,) (, | ,)t t i t ji j P x q x q O (14)

Parameter γt(i, j) is the probability of being in state qi at

time t and transiting to state qj at time t + 1. The di-gammas

can be written in terms of α, β, A and B as:

1 1() ()
(,)

(|)

tt ij jO t

t

i b j
i j

P O

 (15)

One can re-estimate λ = (A, B, π) using di-gamma and

parameter γt(i) defined in (13). Re-estimated πi values:

0 ()i i , i = 0, 1,…, N - 1 (16)

Re-estimated aij values for i, j ∈ {0, 1,…, N-1}:

2

0

2

0

(,)

()

T

t

t

ij T

t

t

i j

a

y i

 (17)

Re-estimated bjk values for j ∈ {0, 1,…, N-1} and k ∈ {0,

1,…, M-1}:

 0,1,..., 1

1

0

()

()

t

t

t T
O k

j k T

t

t

y j

b

y j

 (18)

Using re-estimation through iterations, model λ = (A, B,

π) is optimized to produce used training sequence with the

highest probability. The described solution of problem 3 is

also called Baum-Welch algorithm.

In our case, we used HMMs and Baum-Welch algorithm

to generate IP traffic. This generation process has three

basic steps: (i) The training observation sequences are

created from the recorded IP traffic; (ii) The HMMs are

trained using Baum-Welch algorithm and measured

observation sequences; (iii) The trained HMMs then

generate output sequences which are used to synthesize IP

traffic based on the observed traffic.

III. HMM IMPLEMENTATION

We created traffic generator application named

hmm_ip_gen which utilizes HMMs described in previous

section. HMMs are based on two important IP traffic

features for network performance:

 Packet length – Ethernet packet can be between 64 B

and 1500 B long. Packet size determines maximal

number of packet that can be sand through the link.

Shorter packets require more processing power of

networking devices.

 Packet interarrival time – Packets are commonly

appearing in bursts, i.e. after the first packet there is a

large probability to receive the second packet. Also,

depending on the IP traffic type (video streaming,

games, VoIP, etc), the statistics of interarrival times

between packet bursts can vary. Packet interarrival

time distribution affects the number of packet received

by network devices and more realistically depict the

actual network conditions.

 Application hmm_ip_gen is developed in C programing

language and it is split in three phases (Fig. 1). In the first

phase, hmm_ip_gen is recording real IP traffic on dedicated

interface which is connected with live network. The IP

traffic is recorded using pcap library and it is parsed into

two group of training sequences: packet length sequences

and interarrival time sequences.

In the second phase, packet length and interarrival time

sequences are used as training observation sequences for

HMMs. Before training process starts, HMMs are initialized

by setting values for matrices A, B and π. If some of the IP

traffic characteristics are known, it is recommended to

provide reasonable approximations for the matrix values.

Otherwise, hmm_ip_gen will set initially aij ≈ 1/N, bjk ≈ 1/M,

πi ≈ 1/N. Custom initial matrix values can increase HMM

accuracy. It is important that the values of each matrix are

not absolutely uniform, because the training process will

fail. The HMM training procedure has the following steps:

 Packet length sequence or interarrival time sequence

are used as training observation sequence O (4);

 Based on training observation sequence and initial

values for matrices A, B and π, the parameters αt(i) and

βt(i) are calculated using (7) and (11), respectively;

 The probability P(O| λ) is computed using (8);

 When αt(i), βt(i) and P(O|λ) are calculated, the

parametars γt(i) and γt(i, j) can be computed using (13)

and (16), respectively;

 Then, the parametes γt(i) and γt(i,j) are used to

reestimate values of the matrices π, A and B using (16),

(17) and (18), respectively;

 The new probability P(O|λ) is computed using (8) and

compared to the old probability P(O|λ). If new

probability is higher, then, the new cycle of the HMM

traning procedure begins, where new re-estimated

values of matrices π, A and B are used. Otherwise, new

re-estimated values are rejected and the HMM training

procedure is finished.

Phase 3

Phase 2

Training

HMMs

Time HMMs

Packet size

HMMs

Phase 1

Recording IP

traffic

 Creating

training

sequences

HMM model

Generating

Output

Sequence

Sending

packets

Packet size

sequences

Time

sequences

HMM model

...

HMM model

HMM model

...

Fig. 1. Traffic generator application hmm_ip_gen architecture.

In the third phase, output sequences (packet length and

interarrival time sequences) are generated using trained

HMMs. The sequence generation process is based on the

algorithm for selecting an element with the probability of its

occurrence. Probabilities of the elements are stored in an

array. The algorithm is presented by the pseudo code given

in Fig. 2.

initialize and set index to zero;

initialize and set cumulative probability to zero;

create random uniform number in the range [0,1];

while cumulative probability is less than number:

 add next given probability of an array to

 cumulative probability;

 increment index by 1;

return index;

Fig. 2. The algorithm for selecting element.

 Using the described algorithm, the output sequence is

generated through the following steps:

 A state is selected from matrix π which represents

initial hidden state with its calculated probability;

 An output observation is selected from matrix B which

represents initial output observation with its probability

for a given state;

 Then, the next hidden state is selected from matrix A,

and, the next output observation is selected from

matrix B;

 The previous step is repeated until the entire sequence

is generated.

Output sequences define packets lengths and interarrival

times between packet transmissions. The Ethernet packets

were sent using Linux raw socket.

IV. TESTING ENVIRONMENT AND EXPERIMENTAL

EVALUATION

The testing environment comprises two machines M1 and

M2, which are connected as shown in Fig. 3. Machine M1 is

using hmm_ip_gen to record IP traffic from the network,

train HMMs and generate IP traffic towards machine M2.

The generated IP traffic should have approximately the

same packet length and interarrival time distribution as

recorded IP traffic form the network. We used three points

in our testing environment to measure packet size and time

distribution. These measurement points are labeled in Fig. 3

as A, B and C. The packet length and interarrival time

distribution were measured at point A for the recorded IP

traffic, at point B for output sequences (generated by

HMMs) and at point C for the IP traffic recorded on

machine M2. The pcap library was used on machines M1

and M2 for measuring IP traffic at points A and C

respectively. Generated IP traffic was measured at point B

within hmm_ip_gen application, before it was sent through

raw socket towards machine M2. Tests are conducted for

two types of IP traffic: video streaming and online

multiplayer games.

In the first case, machine M1 was receiving video stream

form the network, while hmm_ip_gen was recording IP

traffic. And in the second case, machine M1 was having

game session for simple browser online multiplayer game

agar.io, while hmm_ip_gen was recording IP traffic.

Network

B C

M1

port 1

hmm_ip_gen

port 2

P
h

as
e

1

P
h

as
e

2

P
h

as
e

3

pcap
raw

socket

A

M2

receiver

pcapport 3

Fig. 3 Testing environment.

The packet length distribution of video streaming in all

three points are shown on Fig. 4. The results clearly

demonstrate that the packet length distribution in all three

points are approximately the same. This means that the

machine M2 (point C) is receiving the IP traffic generated

by machine M1 which has approximately the same statistics

as the traffic on the network (point A).

Also, Fig. 4 shows two dominant packet lengths: 25 % of

packets are short (around 64 Bytes) and 20 % of packets are

long (around 1500 Bytes). The long packets come from

video streaming and TCP packets which carry video data.

The short packets come from many different sources: TCP

ACK (Acknowledgement), routing protocols, DHCP, ARP,

etc.

Fig. 4 Packet size distribution for video streaming.

Fig. 5 Time distribution for video streaming.

Fig. 6 Packet size distribution for online multiplayer game agar.io.

The interarrival time distribution for video streaming is

shown in Fig. 5. Recorded network IP traffic (point A) and

generated output sequences (point B) have very close

interarrival time distributions. However, recorded IP traffic

on machine M2 (point C) has time distribution which

slightly differs when compared to point A and point B

measurements. This difference in time distributions is due to

the limitation of Linux socket as it is difficult to achieve

precise transmission between two successive packets for

short interarrival times (around 100 ns). Still, the overall

interarrival time distribution at point C is quite similar to the

measurements at points A and B. It is worth noting that

accuracy of time distribution is mainly limited by software

and hardware used to generate IP traffic and not by HMMs.

Time distribution at point C can be improved by optimizing

Linux socket or by choosing another more accurate method

for sending packets.

Fig. 7 Time distribution for online multiplayer game agar.io.

The packet length distribution of agar.io is shown in

Fig. 6. Unlike in video streaming, the traffic of online

multiplayer games does not include long packets. The

agar.io server require frequent updates of all players in

session for calculating players positions and other related

parameters. Then, server sends update to each player and

thus providing synchronization between players so they can

interact with each other. This communication between

server and player require IP packets with relatively small

lengths. This IP traffic between server and machine M1 is

shown in Fig. 6 has peak of 23% for packet lengths around

73 Bytes. In Fig. 6, packet length distribution at all three

points is approximately the same as in the case of video

streaming. The interarrival time distribution of agar.io is

shown on Fig. 7 and it has similar characteristics as

interarrival time distribution of video streaming.

V. CONCLUSION

We presented basic principles of HMM and how it can be

used for implementing the IP traffic generator. Our traffic

generator can learn the statistics of the network traffic, and

later use created HMM models for network testing and

performance evaluation. The presented results demonstrate

the hmm_ip_gen capability to easily and very accurately

mimic wide range of different IP traffic patterns. The

hmm_ip_gen flexibility and ability to store large number of

trained HMMs can be suitable for testing and evaluation of

various networks and network devices. Application

hmm_ip_gen can be improved in future by adding different

I/O methods for receiving and sending packets which will

enhance the accuracy of the interarrival time distribution.

Also, trained HMMs in hmm_ip_gen can be adjusted to not

only generate output sequence but also to recognize

different IP traffic patterns in the networks.

ACKNOWLEDGMENT

This work was supported by the Serbian Ministry of

Science and Education (project TR-32022), and companies

Telekom Srbija, and Informatika.

REFERENCES

[1] T. Takine and K. Okazaki, "IP traffic modeling: most relevant time-

scale and local Poisson property," in International Conference on

Informatics Research for Development of Knowledge Society
Infrastructure, Kyoto, 2004.

[2] J. Gordon, "Pareto process as a model of self-similar packet traffic," in

Global Telecommunications Conference (GLOBECOM), Singapore,

1995.

[3] M. A. Arfeen, K. Pawlikowski and D. McNickle, "The role of the

Weibull distribution in Internet traffic modeling," in International
Teletraffic Congress, Shanghai, 2013.

[4] L. Zhen, N. Nicolas and J.-V. Cesar, "Traffic model and performance

evaluation of Web servers," Performance Evaluation, vol. 46, no. 2-3,
pp. 77-100, 2001

[5] H. J. Chao, High Performance Switches and Routers, New Jersey:

Wiley-IEEE Press, 2007.

[6] N. Nikaein, M. Laner, K. Zhou, P. Svoboda, D. Drajic, M. Popovic, S.

Krco, "Simple Traffic Modeling Framework for Machine Type

Communication," International Symposium on Wireless
Communication Systems, Ilmenau, Germany, 2013.

[7] D. Drajic, S. Krco, I. Tomic, P. Svoboda, M. Popovic, N. Nikaein, N.

Zeljkovic,"Traffic generation application for simulating online games
and M2M applications via wireless networks," Conference on

Wireless On-demand Network Systems and Services, Courmayeur,
Italy, 2012.

[8] Z. Ghahramani, "An Introduction to Hidden Markov Models and

Bayesian Networks," International Journal of Pattern Recognition
and Artificial Intelligence, vol. 15, no. 1, pp. 9-42, 2001.

[9] M. Gales and S. Young, "The Application of Hidden Markov Models

in Speech Recognition," Foundations and Trends in Communications
and Information Theory, vol. 1, no. 3, p. 195–304, 2007.

[10] S. Tu, "Derivation of Baum-Welch Algorithm for Hidden Markov

Models", https://people.eecs.berkeley.edu/~stephentu .

