

Abstract - This paper examines the potential of low-cost
commodity computers for hosting network of middleboxes and
switches, and providing flexible inexpensive platform for packet
processing and filtering. The performance of one such solution is
reviewed.

Index Terms - middlebox, unikernel, packet processing.

I. INTRODUCTION

ADVANCES in processing power of modern computers
have opened new application possibilities. One of those is
packet processing. Important functionality of packet network
is processing of packet streams in order to perform actions
such as packet filtering, NAT, load balancing, intrusion
detection and prevention, or function of proxy. Middlebox
functionality is often overlooked by observing the network as
the set of routers and switches but it is obvious that
middleboxes are integral part of modern networks.

Middlebox functionality could be performed by dedicated
devices as well as commodity computers. Some of the
dedicated devices implement their functionality in specialized
hardware chips and provide high throughputs. However, those
higher throughputs come at higher price and reduced
flexibility, in terms of adaptation to new algorithms and
applications. In cases when high throughput is not required,
middlebox functionality can also be implemented in software
and executed on commodity computers.

Recent advances in virtualization technologies have
additionally increased the flexibility of software solutions by
enabling deployment and migration of entire virtual operating
systems. Virtualization enables execution of multiple isolated
operating systems on single server, thus providing the basis
for fast and automatic addition, configuration and removal of
middleboxes implemented as virtual machines, without the
need for any changes in hardware configuration.

Unikernel based virtual machines [1] provide additional
advances in this area, by reducing memory and computational
requirements in comparison with virtual machines based on
multitasking operating systems. Unikernel virtual machines
execute only one application. Hence, they do not require
multitasking kernel. They contain drivers and other needed

Nataša Maksić is with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
maksicn@etf.rs).

system components in libraries which are used by executing
applications. Unikernel virtual machines need only drivers for
underlying virtualization platform, and with them, they can
execute on any computer that has an installation of this
virtualization platform. Unikernel virtual machines require
memory and processing power needed by application
contained in them and have very small additional memory and
processing requirements. That enables execution of many
unikernel virtual machines even on low-cost commodity
computers.

Section 2 of this paper discusses the implementation of
middleboxes on commodity computers. Measurement setup is
introduced in section 3. Results of measurements with one
active middlebox are presented in section 4. Section 5
presents results of measurements for multiple virtual
middleboxes. Section 6 concludes the paper.

II. IMPLEMENTATION OF MIDDLEBOXES USING COMMODITY

COMPUTERS

Goal of this paper is to evaluate the possibility of using

inexpensive, older computers as a platform for running virtual
network of middleboxes and bridges. Such network can be
dynamically reconfigured and updated without the need for
any hardware changes. For that purpose, measurements are
performed on PC configuration with processor i7 920. The
price of this configuration is low. Since the price of 10Gb/s
cards is still high, this PC uses integrated 1Gb/s Ethernet port
and one low-cost 1Gb/s network card. The price of 10Gb/s
network card alone can be higher than the price of entire older
computer.
 Virtual middleboxes are implemented as ClickOS [1]
virtual machines. Open vSwitch [3] instances are used to
connect the network of middleboxes, and to connect
middleboxes with network interfaces. The goal of ClickOS
project was to create unikernel virtual machine with integrated
Click router [4]. ClickOS virtual machine is based on MiniOS
virtual machine which is part of Xen [5] virtualization
software.

ClickOS is intended to be used as a middlebox virtual
machine with low memory and processing requirements.
ClickOS project incorporated usage of netmap [6], Vale
switch [7] and additional optimizations of Linux kernel in
order to provide 10Gb/s processing speeds. Those kernel
optimizations will not be used in this paper since they are not

Running Network of Unikernel Based
Middleboxes on Low-Cost Commodity

Computers
Nataša Maksić, Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. TEI2.5.1-5

part of official Linux kernel, and some system instabilities
with them were detected during the measurements for this
paper. Two third-party components that will be used in the
measurements are virtualization software Xen and software
switch Open vSwitch. Both Xen and Open vSwitch have large
user base and continuous development.
 The rest of the networking software on the server is part of
official Linux kernel. This brings the advantages of stability,
easy installation and setup, as well as the possibility of using
popular applications on the server. However, official Linux
kernel network stack was built for modularity and not for
maximal packet throughput, and throughputs that can be
achieved are limited. Measurement results for these
throughputs are presented in sections IV and V.
 DPDK [8] and netmap projects introduce optimizations for
faster packet processing. These optimizations will not be used
for measurements in this paper since they are not intended for
low-cost network cards. DPDK does not support Realtek
network cards used in these measurements, and netmap has
supported them in earlier versions of Linux kernel, but does
not support them anymore.

Various solutions for execution of virtual middleboxes
were proposed in literature. Flowstream was a proposal for the
middlebox platform which consists of more than one
commodity computer [9]. Flowstram proposes configuration
in which switches distribute flows across a group of
commodity computers, each running a set of virtual machines.
Each virtual machine would run instance of Click router.
Computer running ClickOS virtual machines whose
performance is evaluated in this paper could generally fit into
Flowstram architecture, with the difference that virtual
machines in Flowstram are not connected within the host
computer. Instead, their inputs and outputs are connected to
switches external to the computer that hosts virtual machines.
Configurable connections between virtual machines within the
host server are achieved by using Open vSwitch instances.
 Alternative approach to executing middlebox functionality
on commodity computers is FlowOS platform [10]. Instead of
using virtual machines, FlowOS integrates functionality
within the kernel of the host computer. FlowOS paper
demonstrates that this approach introduces very small
processing overhead and provides good performance. On the
other hand, dependence on the kernel of the host machine
reduces some flexibility introduced by virtual machines, such
as possibility to exchange virtual machine with its complete
software, or the possibility of creating virtual networks using
virtual bridges and virtual machines.
 Recent work on software middlebox performance presents
profiling tool and proposal for performance improvement
[11]. This paper recognizes performance problems introduced
by executing multiple middleboxes on one computer. The
profiling of high performance commodity computers has
detected two possible improvements. One is reduction of the
number of system calls during packet processing. The other is
modification of Linux process scheduler to provide longer
execution times for middlebox processes. That work is part of
the ongoing effort to provide best possible performance for

middlebox software executing on high performance general
purpose computers. Such computers require significant
investment, contrary to low-cost configurations evaluated in
this paper.

III. MEASUREMENT SETUP

Measurements were performed on two computers
connected with two gigabit Ethernet links. In the following
text, these computers will be referred to as middlebox server
and test computer. These computers are connected using
network port integrated on computer motherboard and one
additional low-cost network card. Both integrated interfaces
and network cards use Realtek chips.

The test computer generates packet stream and sends it to
the middlebox server using the first gigabit Ethernet link. The
stream goes through the virtual middleboxes and returns to the
test computer via second gigabit Ethernet link. Packet
throughput is measured at the reception on the test computer.
Measurement configurations are illustrated sections IV and V.

Each measurement was run for 60 seconds, and results for
packet rates and throughputs are averaged over this time
period.

The test computer has netmap installed and generates
packet stream using netmap utility program pkt-gen. Received
packet rate is also measured using program pkt-gen. Netmap
was used with Realtek driver support for older versions of
Linux kernel.

Fig. 1. Throughput generated on test computer

Figure 1 shows generated throughputs on the test computer.
For packet sizes below 500 bytes, throughput is lower than
maximal link speed of 1Gb/s. This is the consequence of
limited packet rates that can be achieved on the test computer.
Table 1 presented in Appendix shows that generated packet
rates are limited to around 280kpkt/s. Since throughput is
proportional to packet rate, the throughputs for small packet
sizes are small. However, this does not affect the
measurement since measured throughputs are smaller than
generated throughputs.

For packet sizes of 500 bytes and above, generated
throughput is equal to link throughput. For these packet sizes

generated packet rates are limited by link throughput.
The middlebox server contains a number of ClickOS virtual

machines and Open vSwitch instances which connects them.
Configuration of ClickOS virtual machine consists of Xen
configuration file and configuration file for Click router. Xen
configuration file contains name of virtual machine file, the
name of virtual machine, and number of processors, amount
of RAM memory and configuration of virtual network
interfaces. Each virtual machine was configured with one
processor and 100MB of RAM.

ClickOS instances are created using Xen program xl, and
started using program cosmos, which is the part of ClickOS
project. Program xl creates virtual machine based on Xen
configuration file. Program Click inside the middlebox will
execute according to supplied configuration file. Click enables
different kinds of packet processing and forwarding, and in
the measurements, it will simply transfer packets from one
port of virtual machine to the other port.

IV. EVALUATION OF PERFORMANCE WITH SINGLE MIDDLEBOX

First set of measurement is performed with one ClickOS
virtual machine on middlebox server. Both the throughput of
packet streams generated by the test computer and the
throughput of the virtual middlebox were measured in this set
of measurements.

Fig. 2. Measurement configuration with one virtual middlebox

The measurement setup is illustrated in Figure 2. On
middlebox server, one Open vSwitch connects port eth0 of the
server and first port of ClickOS virtual machine. Another
Open vSwitch connects second port of the ClickOS virtual
machine, and port eth1 of the server. Packet stream is received
from the test computer on port eth0, than it passes through
bridges and ClickOS virtual machine, and returns towards the
test computer through port eth1 of the server. ClickOS virtual
machine has simple configuration in which all incoming
packets are forwarded from one port to the other port. On the
middlebox server, port eth0 is integrated on the computer
motherboard, and port eth1 is low-cost network card. Both
eth0 and eth1 are 1Gb/s Ethernet ports.

Table 1 shows throughputs of streams with different packet
sizes. Generated packet rate does not change significantly
with increase of packet size until the link is saturated for
bigger packet sizes. This maximal packet rate is determined
by the software and hardware setup of the test computer.
However, because of this maximal packet rate, generated
throughputs are smaller for small packet sizes. This is not

critical, since all received throughputs are smaller than
generated throughputs, and measurements can be performed
with available packet rates of the test computer.

In practice, packet streams with such mean packet below
500 bytes are not expected. For higher packet sizes, generated
throughput achieves link limit of 1Gb/s.

Table 1 shows the packet rates and throughputs with one
ClickOS virtual machine. The packet rates decrease with the
increase of packet size, which can be attributed to packet
copying while traversing through the network drivers, bridges
and ClickOS virtual machine on the middlebox server.
However, as the packet size increases, the throughput also
increases, and reaches around 500Mb/s for typical mean
packet sizes. This throughput is sufficient for most local
networks, and such configuration can be used for
implementation of middleboxes for such networks.

Fig. 3. Received throughput with one virtual middlebox

Figure 3 shows the graph of throughput of one middlebox.
Relatively small inconsistencies can be observed in the
increase of throughput. General purpose operating systems on
PC computers may have variations in packet processing rate
due do operation of kernel subsystems such as process
scheduling and memory management. These variations may
affect the measurements. However, those variations are
limited.

V. EVALUATION OF MULTIPLE MIDDLEBOXES

This section presents results of measurements for different
number of virtual machines executing on middlebox server.
The goal of these measurements is to check how many
middleboxes can be run on middlebox server, while keeping
satisfactory throughput.

Figure 4 shows the measurement setup for this case.
ClickOS virtual machines are connected in linear topology,
with one Open vSwitch connecting a pair of ports on
neighboring virtual machines.

Measurement results are presented in Table 2 in the
Appendix. Table 2 shows how throughput decreases as the
number of virtual middleboxes increase.

Figure 5 shows values of throughput measured for packet

size of 800 bytes, which is realistic assumption for mean
packet size. The throughput drops significantly for more than
four linearly connected middleboxes, and stays approximately
constant for four or less middleboxes. This coincides with i7
processor architecture which has four processing cores, and
each core supports two processing threads. This indicates that
throughput decreases after there are more middleboxes than
processor cores, and more than one middlebox needs to be
executed on one core.

Fig. 4. Measurement configuration with multiple virtual middleboxes

Fig. 5. Received throughput with multiple virtual middleboxes and 800 byte
packet size

VI. CONCLUSION

This paper presents results of evaluation of ClickOS virtual
machines with official network stack and Open vSwitch
bridging between ports of middleboxes and host computer.
Such configuration can be easily installed on some outdated

computer without any additional cost. It can provide the
network administrators the possibility to evaluate the benefits
of the approach with virtual middlebox network. These
benefits include completely software-based reconfiguration,
without the need for any operation on network cabling or
some other hardware operation. Software reconfiguration
introduces simpler updates with less down-time and fast
configuration of complicated virtual topologies.

The paper shows that one computer without optimized
software can execute smaller number of virtual middleboxes
and achieve performance which can be sufficient for smaller
networks.

This results show throughputs that can be achieved with
low-cost computer configurations, and Linux kernel without
unofficial optimizations aimed at increase of packet
processing speeds. Such setup is stable and affordable and
may provide introduction into using platforms with virtual
middleboxes.

As packet processing optimizations on the path between
Ethernet port and virtual machine mature, and the price of
10Gbit/s network cards fall, the performance of affordable
platforms for virtual middleboxes will significantly improve.

ACKNOWLEDGMENT

This work was supported within the project TR-32022 by
the Serbian Ministry of Science and Education, and by
companies Telekom Srbija and Informatika.

REFERENCES

[1] A. Madhavapeddy and D. J. Scott, “Unikernels: The Rise of the Virtual

Library Operating System,” Communications of the ACM, Vol. 57, No.
1, January 2014

[2] J. Martins, M. Ahmed, C. Raciu, V. Olteanu, M. Honda, R. Bufulco,
and F. Huici, “ClickOS and the Art of Network Function
Virtualization,” USENIX NSDI ‘14, Seattle, WA, USA, April 2014

[3] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J.
Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” USENIX NSDI
‘15, Oakland, CA, USA, May 2015

[4] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek, “The Click
modular router,” SOSP ’99, Kiavah Island, SC, USA, December 1999.

[5] P. Bargam, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, “Xen and the Art of Virtualization,”
SOSP ’03, Boldon Landing, NY, USA, October 2003

[6] L. Rizzo, “netmap: a novel framework for fast packet I/O,” Usenix
ATC'12, Boston, MA, USA, June 2012

[7] L. Rizzo, G. Lettieri, “VALE, a Switched Ethernet for Virtual
Machines,” CoNEXT '12, Nice, France, December 2012

[8] Intel Data Plane Devopment Kit (Intel DPDK),
http://www.intel.com/content/www/us/en/communications/data-plane-
development-kit.html

[9] A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and P.
Papadimitrou, “Flow Processing and the Rise of Commodity Network
Hardware,” ACM SIGCOMM Computer Communication Review, Vol.
39, No. 2, April 2009

[10] A. Alim, M. Bezahaf, and L. Mathy, “FlowOS: A Programmable
Platform for Commodity Hardware Middleboxes,” CFI ’13, Being,
China, June 2013

[11] G. P. Katsikas, G. Q. Maquire Jr., Dejan Kostić, “Profiling and
accelerating commodity NFV service chains with SCC,” The Journal of
Systems and Software 127, 12-27, January 2017.

Packet Size
[B]

Generated
Packet Rate [kpkt/s]

Generated Throughput
[Mb/s]

Received
Packet Rate [kpkt/s]

Received
Throughput [Mb/s]

60 284.99 136.80 (raw 191.51) 237.52 114.01
100 286.82 229.46 (raw 284.53) 256.63 205.30
200 281.48 450.36 (raw 504.41) 205.72 329.15
300 271.19 650.85 (raw 702.92) 152.84 366.82
400 268.75 860.00 (raw 911.60) 146.26 468.03
500 238.53 954.11 (raw 999.91) 108.82 435.28
600 200.30 961.46 (raw 999.91) 101.33 486.38
700 172.64 966.76 (raw 999.91) 90.47 506.63
800 151.69 970.79 (raw 999.92) 79.47 508.61
900 135.26 973.88 (raw 999.85) 71.70 516.24
1000 122.06 976.48 (raw 999.92) 66.90 535.20
1100 111.20 978.57 (raw 999.92) 61.12 537.86
1200 102.12 980.31 (raw 999.92) 59.98 575.81
1300 94.40 981.79 (raw 999.92) 55.29 575.02
1400 87.77 983.06 (raw 999.92) 53.10 594.72
1500 82.01 984.17 (raw 999.92) 50.13 601.56

 VM
 count

Packet
 size

1

2

3

4

5

6

7

8

9

10

15

20

60 114.01 98.90 67.91 55.23 43.61 30.57 25.05 19.65 10.30 11.05 0.82 0.5
100 205.30 156.89 127.68 91.76 71.79 57.62 48.84 45.68 27.25 18.22 1.37 0.87
200 329.15 263.46 200.90 154.94 108.05 103.63 64.53 60.62 52.08 43.52 2.59 1.71
300 366.82 369.41 295.49 205.08 169.68 148.42 128.59 112.30 59.50 49.66 3.89 2.52
400 468.03 426.88 260.96 280.26 213.57 188.86 121.18 93.50 22.24 23.52 4.93 3.42
500 435.28 476.48 346.48 278.08 266.28 231.52 202.24 135.2 26.36 33.84 6.28 4.12
600 486.38 508.18 464.69 353.66 301.63 281.81 162.43 207.70 83.66 92.59 7.78 4.99
700 506.63 525.0 506.30 478.07 387.07 323.23 232.18 173.32 139.55 104.38 10.58 5.77
800 508.61 530.88 515.39 512.51 436.8 331.33 284.28 226.24 186.05 145.98 11.33 6.51
900 516.24 527.54 525.67 514.08 425.66 389.88 289.37 256.25 211.39 131.11 13.39 7.49
1000 535.20 543.36 544.8 540.8 478.08 428.0 353.68 245.44 235.2 148.72 15.76 8.0
1100 537.86 547.62 549.65 544.46 500.02 400.84 334.84 250.36 255.90 262.24 16.90 8.98
1200 575.81 564.38 566.78 566.11 551.62 510.91 413.57 294.62 283.2 170.59 15.94 10.27
1300 575.02 575.02 574.18 574.81 561.50 500.76 357.24 283.92 293.49 235.87 23.4 11.44
1400 594.72 593.71 588.56 586.88 583.52 541.74 386.85 336.90 323.34 196.0 21.95 11.87
1500 601.56 602.52 598.92 599.16 518.76 579.96 377.28 333.24 348.84 207.36 22.56 12.96

APPENDIX: TABLE II
Throughput of multiple virtual middleboxes [Mb/s]

APPENDIX: TABLE I
Performance of single virtual middlebox

